2. Историческое и математическое познание
2. Историческое и математическое познание
Относительно исторических истин, — о которых упомянем вкратце, поскольку рассматривается именно их чисто историческая сторона, — легко согласиться, что они касаются единичного наличного бытия, некоторого содержания со стороны его случайности и произвола, его определений, которые не необходимы. — Но даже такие голые истины, как в приведенных нами примерах, невозможны без некоторого движения самосознания. Чтобы узнать одну из них, нужно многое сравнить, порыться в книгах, т. е. тем или иным способом произвести исследование; точно так же и при непосредственном созерцании только знание их вместе с их основаниями считается чем-то, что обладает истинной ценностью, хотя, собственно говоря, здесь как будто важен только голый результат.
Что касается математических истин, то еще в меньшей мере мог бы считаться геометром тот, кто знал бы теоремы Эвклида наизусть (auswendig), без их доказательств, не зная их, — если можно так выразиться для противоположения — внутренне (inwendig). Точно так же считалось бы неудовлетворительным знание, которое было бы приобретено путем измерения многих прямоугольных треугольников, относительно того, что их стороны находятся в известном отношении друг к другу. Однако и в математическом познавании существенность доказательства еще не имеет значения и характера момента самого результата; напротив, в нем доказательство закончилось и исчезло. Правда, теорема как результат есть нечто рассматриваемое как истинное. Но это привходящее обстоятельство касается не ее содержания, а только отношения к субъекту. Движение математического доказательства не принадлежит тому, что есть предмет, а есть действование, по отношению к существу дела внешнее. Природа прямоугольного треугольника, например, сама не разлагается так, как это изображается на чертеже, необходимом для доказательства положения, выражающего его отношение; полное выведение результата есть ход и средство познавания. — В философском познавании становление наличного бытия как наличного бытия также отличается от становления сущности или внутренней природы дела. Но философское познавание, во-первых, содержит и то и другое, тогда как математическое познавание, напротив, изображает только становление наличного бытия, т. е. бытия природы дела в познавании как таковом. Во-вторых, философское познавание объединяет и эти два особых движения. Внутреннее возникновение или становление субстанции есть прямо переход во внешнее или в наличное бытие, в бытие для другого, и, наоборот, становление наличного бытия есть возвращение в сущность. Движение есть двойной процесс и становление целого в том смысле, что в одно и то же время каждое полагает другое и каждому поэтому присуще и то и другое как два аспекта; совместно они составляют целое благодаря тому, что они сами себя растворяют и превращают себя в моменты.
В математическом познавании усмотрение есть действование, для сути дела внешнее; это следует из того, что истинная суть дела благодаря этому изменяется. Поэтому средство, т. е. чертеж и доказательство, содержит, правда, истинные положения; но точно так же надо сказать, что содержание ложно. Треугольник в вышеприведенном примере разрывают, и его части обращают в другие фигуры, возникающие благодаря чертежу. Только к концу восстанавливается тот треугольник, из-за которого, собственно говоря, и было все предпринято, но который был потерян из виду в этом процессе и был представлен только в частях, принадлежавших другим целым. — Таким образом, мы видим, что и здесь выступает негативность содержания, которую с таким же правом можно было бы называть его ложностью, как и в движении понятия — исчезновение мыслей, которые считаются установившимися.
Но в собственном смысле несовершенство этого познавания имеет отношение как к самому познаванию, так и к его материалу вообще. — Что касается познавания, то прежде всего не видна необходимость чертежа. Он не вытекает из понятия теоремы, а навязывается, и мы слепо должны повиноваться этому предписанию — провести именно данные линии, вместо которых можно было бы провести бесконечное множество иных, — ничего больше не зная, имея лишь уверенность в том, что это целесообразно для ведения доказательства. И впоследствии действительно обнаруживается эта целесообразность, которая остается только внешней по одному тому, что она обнаруживается только впоследствии при доказательстве. — Точно так же доказательство ведется путем, который где-то начинается, еще неизвестно, в каком отношении к искомому результату. В процессе доказательства принимаются данные определения и отношения и игнорируются другие, причем непосредственно нельзя усмотреть, в силу какой необходимости это делается. Этим движением управляет некоторая внешняя цель.
Очевидность этого несовершенного познавания, которой математика гордится и кичится перед философией, покоится лишь на бедности ее цели и несовершенстве ее материала, а потому это такая очевидность, которую философия должна отвергать. — Цель математики или ее понятие есть величина. А это есть как раз несущественное, лишенное понятия отношение. Движение знания совершается поэтому на поверхности, касается не самой сути дела — сущности или понятия — ив силу этого не есть постигание в понятии. — Материал, относительно которого математика обеспечивает, удовлетворяющий запас истин, есть пространство и [счетная] единица. Пространство есть наличное бытие, в которое понятие вписывает свои различия, как в пустую мертвую стихию, где они точно так же неподвижны и безжизненны. Действительное не есть нечто пространственное в том смысле, в каком оно рассматривается в математике; с такой недействительностью, каковы вещи в математике, не имеет дела ни конкретное чувственное созерцание, ни философия. Ведь в такой недействительной стихии и бывает только недействительное истинное, т. е. фиксированные, мертвые положения. На каждом из них можно прервать изложение; каждое последующее начинает для себя сначала, причем первое само не переходит ко второму, и между ними, таким образом, не возникает необходимой связи, вызываемой природой самой вещи (Sache). — Вследствие упомянутого принципа и стихии-и в этом состоит формальный характер математической очевидности — знание переходит от равенства к равенству. Ибо мертвое, так как оно само не приводит себя в движение, не доходит до различения сущности, до существенного противоположения или неравенства, не достигает поэтому и перехода противоположного в противоположное, не доходит до качественного, имманентного движения, до самодвижения. Ибо именно одну лишь величину, [т. е.] различие несущественное, и рассматривает математика. Она абстрагируется от того, что именно понятие разлагает пространство на его измерения и определяет связи между ними и в них. Она не рассматривает, например, отношения линии к плоскости, а там, где она сравнивает диаметр круга с окружностью, она наталкивается на несоизмеримость их, т. е. на некоторое отношение понятия, на нечто бесконечное, ускользающее от математического определения.
Имманентная, так называемая чистая математика не противопоставляет пространству также времени как времени, в качестве второго материала для своего рассмотрения. Прикладная математика, правда, трактует о нем, как и о движении, а также и о других действительных вещах; но она заимствует из опыта синтетические положения, т. е. положения об отношениях действительных вещей, которые определены понятием последних, и только к этим предпосылкам она применяет свои формулы. Тот факт, что так называемые доказательства таких часто выдвигаемых ею положений, как положение о равновесии рычага, об отношении пространства и времени в движении падения и т. д., выдаются и принимаются за доказательства, — сам есть лишь доказательство того, как велика для познавания надобность в доказывании, потому что познавание там, где оно уже не располагает доказательствами, придает значение даже пустой видимости их и находит в этом удовлетворение. Критика таких доказательств была бы столь же достойна внимания, сколь и поучительна, с одной стороны, для того, чтобы снять с математики это фальшивое украшение, а, с другой стороны, для того, чтобы показать ее границы и отсюда — необходимость иного знания. — Что касается времени, о котором внушалось мнение, будто оно, в противоположность пространству, составляет материал другой части чистой математики, то оно само есть налично сущее понятие. Принцип величины — различия, лишенного понятия, — и принцип равенства — абстрактного безжизненного единства — не способны заниматься с тем чистым беспокойством жизни и абсолютным различением. Посему эта негативность, только будучи парализована, т. е. в качестве [счетной] единицы, становится вторым материалом этого познавания, которое, оставаясь внешним действованием, низводит самодвижущееся до материала, чтобы располагать в нем безразличным, внешним, безжизненным содержанием.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
2. Диалектика количественных и качественных отношений и математическое познание
2. Диалектика количественных и качественных отношений и математическое познание На каждом историческом этапе развития математика, как и любая другая наука, представляет собой определенный конкретный и в известной степени фиксированный способ и результат познания
4. Историческое познание
4. Историческое познание Что такое память?В чем отличие памяти и воспоминаний?У каждого из нас есть одно важное свойство — обладание памятью. Без памяти не может выжить не только человек, но и ни одно живое существо вообще. Ведь необходимые связи, причинные зависимости в
2. Диалектика количественных и качественных отношений и математическое познание
2. Диалектика количественных и качественных отношений и математическое познание На каждом историческом этапе развития математика, как и любая другая наука, представляет собой определенный конкретный и в известной степени фиксированный способ и результат познания
6. Логическое и историческое
6. Логическое и историческое Процессу познания присуща неустранимая противоречивость, важным моментом которой выступает единство логического и исторического, что впервые было подчеркнуто Гегелем. Взаимосвязь логического и исторического в первую очередь зависит от
3. Историческое и логическое
3. Историческое и логическое Все проявления этой спекулятивной общей точки зрения — как в позитивных ее моментах, так и в ложных — мы увидим теперь в деталях способа построения исторического знания о содержании и развитии философской мысли. В этой связи особую важность
3. Познание и свобода. Активность мысли и творческий характер познания. Познание активное и пассивное. Познание теоретическое и практическое
3. Познание и свобода. Активность мысли и творческий характер познания. Познание активное и пассивное. Познание теоретическое и практическое Невозможно допустить совершенной пассивности субъекта в познании. Субъект не может быть зеркалом, отражающим объект. Объект не
3. Одиночество и познание. Трансцендирование. Познание как общение. Одиночество и пол. Одиночество и религия
3. Одиночество и познание. Трансцендирование. Познание как общение. Одиночество и пол. Одиночество и религия Есть ли познание преодоление одиночества? Бесспорно, познание есть выход из себя, выход из данного пространства и данного времени в другое время и другое
Экспериментальное математическое естествознание
Экспериментальное математическое естествознание Ренессанс, то есть возрождение античной культуры, имел огромное значение для становления экспериментальных наук. После падения Восточной римской империи (1453) многие интеллектуалы отправились на Запад. Точно так же, как
З. Историческое развитие
З. Историческое развитие Я не могу здесь полностью воспроизвести содержание «Тотема и табу», но я должен заполнить длительный промежуток, отделяющий доисторическое время от победы монотеизма. После создания братского клана, установления материнского права, экзогамии и
1.18. Почему именно математическое понимание?
1.18. Почему именно математическое понимание? Все эти благоглупости, конечно, очень (или не очень) замечательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы математики и философии математики к большинству
1.21. Является ли невычислимым математическое воображение?
1.21. Является ли невычислимым математическое воображение? Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычислительным путем. Даже если визуализация действительно осуществляется посредством какой-то
3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание? Согласно выводу G, для того чтобы математическое понимание могло оказаться результатом выполнения некоего алгоритма, этот алгоритм должен быть необоснованным
3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание? Перейдем к случаю II и попытаемся серьезно рассмотреть возможность того, что математическое понимание на деле эквивалентно некоторому сознательно познаваемому
Глава 1. Математическое сомнение в логике. Пуанкаре
Глава 1. Математическое сомнение в логике. Пуанкаре В сущности, я начал рассказ о рассуждении в логике с того, что высказал ей недоверие. Оговорюсь сразу: не всей. Пока не всей. Пока только той, что присвоила себе это имя одновременно с современной физиологической
3. Математическое возражение
3. Математическое возражение Имеется ряд результатов математической логики, которые можно использовать для того, чтобы показать наличие определенных ограничений возможностей машин с дискретными состояниями. Наиболее известный из этих результатов – теорема Гёделя[8] –