5.1. Что такое доказательство?
5.1. Что такое доказательство?
Знание о логических законах и ошибках, связанных с их нарушениями, особенно важно для правильного построения доказательства, которое представляет собой совокупность приемов подтверждения или опровержения чего-либо (тезиса, утверждения, идеи, мысли и т. п.) называется доказательством. Обратим внимание на то, что и подтвердить, и опровергнуть – означает доказать. В повседневной жизни понятия подтверждение и доказательство часто употребляются в качестве равнозначных, а соответствующие термины воспринимаются как синонимы, что не совсем верно: подтверждение – это разновидность доказательства, наряду с опровержением. Подтвердить – это значит доказать истинность какого-либо высказывания, а опровергнуть – доказать ложность некого суждения (положения, утверждения, тезиса).
Все доказательства делятся на непосредственные и опосредованные. В непосредственном доказательстве некое высказывание подтверждается или опровергается путем соотнесения его с действительностью. Например, для того, чтобы установить истинным или ложным является утверждение: Сейчас на улице идет дождь достаточно соотнести его с действительностью, т. е. просто выглянуть в окно. Точно так же для определения инстинности или ложности суждения: Это тело тяжелее данной жидкости надо всего лишь погрузить тело в жидкость и посмотреть, что произойдет: утонет оно в ней или нет. Непосредственные доказательства также часто называют эмпирическими (от греч. еmреiria – опыт), т. е. базирующимися на опыте. В данном случае термин «опыт» надо понимать не в узком смысле (например, опыты по физике, опыты по химии и т. п.), а в широком: опыт – это все то, с чем мы соприкасаемся в жизни с помощью органов чувств (т. е. видим, слышим, осязаем, и т. д.).
Далеко не все можно доказать эмпирически, т. е. с помощью ссылки на опыт. Например, для эмпирического доказательства утверждения о том, что сумма внутренних углов любого треугольника равна 1800, надо начертить треугольник, измерить транспортиром его углы и сложить их величины. Получится 1800. Но ведь этот результат характеризует именно данный, только что начерченный треугольник. Вдруг у другого треугольника сумма внутренних углов не будет равна 1800. Для того чтобы выяснить это, построим другой треугольник, измерим транспортиром его углы и сложим их величины. Опять получится 180?. Однако, может оказаться, что у третьего треугольника сумма внутренних углов будет отличаться от 180?. Начертим третий треугольник и измерим его углы… Таким образом, чтобы доказать эмпирически утверждение об одной и той же сумме внутренних углов любого треугольника, надо построить все возможные треугольники, измерить и сложить величины углов в каждом из них. Сделать это, конечно же, никто не сможет, ведь множество всех треугольников бесконечно. Как видим, в данном случае непосредственное, или эмпирическое доказательство неприменимо.
Каким же образом доказывается положение о сумме внутренних углов любого треугольника? Из курса школьной геометрии всем хорошо известно, что оно выводится не из видимой действительности, или опыта, а из других, ранее доказанных положений (теорем). Такое доказательство является опосредованным. Итак, если в непосредственном доказательстве истинность или ложность какого-либо утверждения устанавливается на основе соотнесения его с действительностью, то в опосредованном доказательстве некое высказывание подтверждается или опровергается с помощью других высказываний, истинность которых установлена ранее и не подлежит сомнению. Понятно, что предметом внимания логики является именно такое доказательство.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 5 Доказательство
Глава 5 Доказательство 5.1. Что такое доказательство? Знание о логических законах и ошибках, связанных с их нарушениями, особенно важно для правильного построения доказательства, которое представляет собой совокупность приемов подтверждения или опровержения чего-либо
5. Доказательство
5. Доказательство От умозаключений необходимо отличать другую логическую форму — доказательство.В умозаключении мы приходим к выводу из посылок, причем иногда мы совсем не знаем, к какому именно выводу приведут данные посылки, то есть вывод в принципе может быть
§ 1. ДОКАЗАТЕЛЬСТВО И АРГУМЕНТАЦИЯ
§ 1. ДОКАЗАТЕЛЬСТВО И АРГУМЕНТАЦИЯ Цель познания — достижение достоверного, объективного, истинного знания для активного воздействия на окружающий мир. Установление объективной истины — важная задача демократической системы правосудия. Достоверное познание
1. Доказательство и опровержение
1. Доказательство и опровержение Если исходить из самой сущности доказательства, то можно подметить, что оно преследует разные цели — обоснование истинности тезиса или его ложности. В зависимости от этой цели и выделяются прежде всего два вида доказательства: собственно
Доказательство
Доказательство Если кто-нибудь во сне попадает в Рай, и ему дают цветок в подтверждение того, что он там был, и если, проснувшись, он обнаружит этот цветок в своей руке… что тогда? С. Т. Кольридж (1772 –
51. Доказательство
51. Доказательство Доказательство – важное качество правильного мышления.Теории, доказательства и опровержения являются средствами в руках человека для создания новых обоснованных знаний. Доказательство необходимо в научном мире, оно определяет истинность того или
1. Доказательство
1. Доказательство Мы познаем мир посредством органов чувств, и такое познание чаще всего не нуждается в доказательстве, так как вполне очевидно. Например, не требует доказательства то, что огонь — горячий. Достаточно протянуть к нему руку.Однако не все явления, предметы
1. ЧТО ТАКОЕ МАТЕРИЯ? ЧТО ТАКОЕ ОПЫТ?
1. ЧТО ТАКОЕ МАТЕРИЯ? ЧТО ТАКОЕ ОПЫТ? С первым из этих вопросов постоянно пристают идеалисты, агностики, и в том числе махисты, к материалистам; со вторым — материалисты к махистам. Попытаемся разобраться, в чем тут дело.Авенариус говорит по вопросу о материи:«Внутри
6.1. Доказательство от зла
6.1. Доказательство от зла В ходе недавнего визита в Германию папа Бенедикт XVI посетил лагерь смерти в Освенциме. Осматривая памятник почти 1,5 миллионам жертв нацизма, он не сумел найти слов объяснения или утешения: «В этом месте слова бессильны. В конце концов, здесь
6.1.1. Логическое доказательство
6.1.1. Логическое доказательство Построить логическое доказательство нетрудно. По сути, это те самые аргументы, которые мгновенно приходят в голову многим из нас, стоит лишь задуматься о проблеме «Бог и зло». Простейшая их версия такова: 6.1. Если бы существовал Бог, не было
6.1.2. Вероятностно–эмпирическое доказательство, часть 1: «Прямое доказательство»
6.1.2. Вероятностно–эмпирическое доказательство, часть 1: «Прямое доказательство» В первой версии вероятностно–эмпирического доказательства используется общая схема логического доказательства. Различие здесь лишь в том, что посылки доказательства трактуются лишь как
6.2. Доказательство от сокрытости
6.2. Доказательство от сокрытости Критики теизма давно ссылаются на существование зла как на неотразимое свидетельство того, что Бога нет. Наличные данные могут подтверждать — или не подтверждать — этот вывод, однако с некоторых пор другие критики заявляли, что есть еще
6.2.1. Доказательство Шеллепберга
6.2.1. Доказательство Шеллепберга Простейшая версия аргументации Шелленберга имеет следующий вид: 6.18. Если Бог есть, то Он является совершенно любящим. 6.19. Если совершенно любящий Бог существует, то разумного неверия не бывает. 6.20. Разумное неверие имеет место. 6.21.
2. Гёделевское доказательство
2. Гёделевское доказательство 2.1. Теорема Гёделя и машины Тьюринга В наиболее чистом виде мыслительные процессы проявляются в сфере математики. Если же мышление сводится к выполнению тех или иных вычислений, то математическое мышление, по всей видимости, должно