§ 10. Бесконечное – Декарт
§ 10. Бесконечное – Декарт
Ранее мы видели, что аргументы Зенона относятся ко всем проблемам и ко всем фундаментальным концепциям геометрии – теперь мы увидим, что они точно так же относятся к арифметике, и что, так сказать, невозможно сделать ни шага в сфере математики, чтобы не столкнуться с «дихотомией». Поскольку аргументы Зенона основываются на очевидных затруднениях, связанных с понятием бесконечного, в этом, собственно, нет ничего удивительного. Мы должны встречать затруднения повсюду, где мы сталкиваемся с концепцией бесконечности – но она находится, так сказать, повсюду, особенно в математике, собственную основу которой она представляет. Следовательно, если мы хотим всерьез признать само по себе противоречие, которое присуще понятию бесконечности, то мы должны также единым махом перечеркнуть все математические науки и осудить не только теорию функций и исчисление бесконечно малых, но также всю Эвклидову геометрию и арифметику.
Но действительно ли понятие бесконечного само по себе противоречиво? Это часто утверждалось, и здесь можно было бы использовать аргументы Зенона в качестве доказательства. Говорилось, что невозможно постичь бесконечное, т. е. незаконченное как актуально наличное, продолжающееся до бесконечности деление, как, тем не менее, осуществленное и законченное! Однако мы полагаем, что эти кажущиеся противоречия являются всего лишь результатом двух заблуждений: отождествления только неопределенного (ind?fini) с бесконечным (infini) и применения к бесконечному финитистических понятий – как например, числовое равенство. Как бы там ни было, эти вопросы были настолько исчерпывающе проработаны и разъяснены в работах Рассела и Кутюра, что нам нет нужды на них останавливаться. Нам фактически продемонстрировано, что понятие актуальной бесконечности никоим образом невозможно вывести или реконструировать из других понятий. Концепции потенциальной бесконечности, бесконечного возрастания или изменения без конца, к которым хотят свести актуальную бесконечность или даже поставить их на место последней, основаны, в свою очередь, на гипотезах, реально предполагающих актуальную бесконечность. Потенциальная бесконечность возможна только в актуальной бесконечности и на ее основе. Только в бесконечности может возрастать и изменяться величина, так же, как и переменная может расти и изменяться до бесконечности. Несомненно, противоречиво рассматривать бесконечное как завершенное, поскольку тогда оно является только чем-то неопределенным, но не актуальной бесконечностью. Или в аристотелевском стиле: вещь не может одновременно находиться в состоянии потенции и в состоянии акта; и акт всегда есть то, что служит основой потенции, а не наоборот. Если на прямой можно обнаружить бесконечное количество точек, то это возможно лишь потому, что они там есть. И если можно считать до бесконечности, то вследствие того, что количество конечных чисел бесконечно. Также актуальную бесконечность предполагает понятие предела, с помощью которого хотят обойти это затруднение[347] и устранить понятие актуальной бесконечности. Что же должно означать, когда точка, величина представляет предел ряда, если не именно то, что мы все еще находим бесконечность точек, бесконечность элементов этого ряда даже весьма близко к пределу, на очень малом расстоянии, каким бы малым ни было различие? Итак, очевидно, что понятие бесконечности входит в определение предела даже дважды: 1. В факторе бесконечного количества точек; 2. В бесконечном приближении к пределу.
Из вышесказанного следует, что мы должны и можем полагать бесконечное чисто в себе самом – как прафеномен. И при этой возможности стоило бы вспомнить, что хотя теорию актуальной бесконечности по праву связывают с именем Кантора, но она уже задолго до Кантора стала фундаментом философских и математических умозрений. Но также о Больцано, его гениальном предшественнике, который был не понят в свое время, а также забыт потомками, мы в данный момент говорить не хотим, но хотим говорить о великом основателе современной философии и науки: о Декарте, который силой и глубиной взгляда, продуманного еще дальше, чем у Кантора, не только зафиксировал объективную законность «бесконечного»[348] и указал на невозможность поставить на ее место только неопределенное, но и сделал бесконечность принципиальным основанием учения о конечном.
Данный текст является ознакомительным фрагментом.