Лекция 3. Искусство вычисления
Лекция 3. Искусство вычисления
Мы живем в цивилизации техники, о которой большинство /I/I из нас имеет малое представление. Почему загорается электрический свет, когда мы нажимаем на включатель? Почему холодно в холодильнике? Как летчик с самолета берет на мушку цель на земле? Что позволяет астрономам предсказывать затмения? На основании каких принципов страховые компании решают, выплачивать или нет страховку? Это, безусловно, практические вопросы, и если бы кто-то не знал на них ответы, то мы не могли бы наслаждаться теми удобствами, которыми имеем обыкновение гордиться. Людей, знающих ответы, действительно немного. Обычно именно они придумывают правило или машину, которая позволяет всем другим людям управлять ею, обладая лишь некоторыми знаниями; практикующий электрик не должен знать теорию электричества, несмотря на то, что это необходимо для изобретений, с которыми он знает, как нужно обращаться. Если вы хотите быть способными ответить на подобные ежедневные вопросы, то должны выучить много вещей, и самая необходимая из них – это математика.
Некоторые люди все равно будут ненавидеть математику, как бы хорошо они ее ни выучили. Они не должны пытаться стать математиками, а их учителя могут перестать заниматься с ними после того, как они доказали свою неспособность уже при изучении начального курса. Но если преподавать математику правильно, то ненавидеть ее будет гораздо меньше людей, чем сегодня.
Существуют разные пути, которыми можно прививать любовь к математике. Один из методов был интуитивно использован отцом Галилея, который сам был математиком, но не смог зарабатывать на жизнь с помощью своей профессии. Он решил, что его сын должен уметь делать нечто более выгодное и прибыльное, и с этой целью с самого детства скрывал от него само существование математики. Но однажды, согласно преданию, юноша 18 лет отроду услышал лекцию по геометрии, которую читал профессор в соседней аудитории. Он был восхищен и в течение очень короткого времени стал одним из ведущих математиков того времени. Однако я сомневаюсь, чтобы этот метод был принят к использованию государственными чиновниками в области образования. Думаю, что есть и другие, более пригодные для успешного широкого применения, методы обучения математике.
На начальном этапе всякое обучение математике должно начинаться с практических проблем; это должны быть легкие проблемы, которые могли бы заинтересовать ребенка. В моей юности (возможно, ничего в этом плане и не изменилось с тех пор) предлагали решать такие проблемы, что никто в принципе не пожелал бы их решать. Например: A, B, C едут из X в Y. A пешком, B – на лошади. C-на велосипеде. A всегда засыпает в нечетные моменты времени, у B захромала лошадь, а у велосипеда C лопнула шина. A понадобилось бы в два раза больше времени, чем понадобилось бы B, если бы у него не захромала лошадь, а C приехал бы на полчаса позже A, если бы тот не заснул и т. д. Даже наиболее ревностным студентам наскучили подобные задачи.
Самый лучший способ в преподавании математики – это экскурс в раннюю историю математики. Этот предмет был изобретен потому, что существовали практические проблемы, которые люди на самом деле хотели решить – из-за любопытства или по неотложным практическим причинам. Рекики рассказывали бесконечные истории о подобных проблемах, и умные люди находили им решение. Несомненно часто эти истории были выдумкой, но это не имеет значения, если они используются в качестве иллюстрации. Я напомню некоторые из них, не ручаясь за их историческую точность.
Основателем греческой математики и философии был Фалес, молодой человек, живший в 600 г. до н. э. Путешествуя, он посетил Египет, и египетский фараон спросил его, может ли он определить высоту пирамиды Хеопса. Фалес в определенный момент времени измерил длину тени от пирамиды и свою собственную тень. Очевидно, что соотношение его роста к длине его тени было то же самое, что и соотношение высоты пирамиды к длине отбрасываемой ею тени, поэтому ответ был найден посредством решения уравнения с одним неизвестным. Затем фараон спросил Фалеса, может ли он определить расстояние до корабля, находящегося в море, оставаясь на суше. Это более сложная задача, и трудно дать ей какое-то общее решение, хотя, судя по легенде, Фалесу это удалось. В принципе нужно наблюдать направление движения корабля с двух точек на суше, расстояние между которыми известно; чем дальше будет корабль, тем меньше разница между этими двумя направлениями движения. Полный ответ требует использования тригонометрии, которая была изобретена много сотен лет спустя. Однако в конкретных случаях можно легко найти ответ. Предположим, например, что берег простирается с востока на запад, корабль находится на севере в определенной точке A от берега и на северо-западе в определенной точке B. Тогда расстояние от A до корабля равно расстоянию от A до B, в чем читатель может легко убедиться, начертив соответствующую фигуру. Предположим, на корабле находятся вражеские силы, а египетские войска вышли на берег отразить их удар. В такой ситуации знание расстояния, на котором находится корабль от берега, будет весьма полезным.
Настоящая математика начинается с достижения, известного как теорема Пифагора. Египтяне сделали некоторые первые шаги в геометрии для того, чтобы, как говорят, измерять рисовые поля после наводнений. Они заметили, что треугольник, стороны которого соответственно 3,4 и 5 единиц длины, имеет прямой угол. Пифагор (или какой-то его ученик) отметил интересный факт в отношении этого треугольника. Если вы построите квадраты на сторонах этого треугольника, один из них будет иметь 9 квадратных единиц, другой 16, а третий – 25, а 9 + 16 = 25. Пифагор (или его ученик) обобщил этот факт и доказал, что в любом прямоугольном треугольнике квадраты коротких сторон в сумме равны квадрату длинной стороны. Это было наиболее важное открытие, воодушевившее греков на создание науки геометрии, что они и сделали с изумительным мастерством.
Но помимо этого открытия возникло и беспокойство, которое тревожило как греков, так и современных математиков и было полностью устранено лишь совсем недавно. Предположим, дан прямоугольный треугольник, в котором катеты имеют длину один дюйм; в таком случае какую длину будет иметь третья сторона? Квадрат каждого катета равен одному квадратному дюйму, следовательно квадрат гипотенузы будет равен двум квадратным дюймам. Значит длина гипотенузы должна измеряться таким числом, чтобы квадрат этого числа был равен 2. Это число называется «квадратный корень из 2». Греки вскоре сделали открытие, что такого числа нет. Вы сами можете легко в этом убедиться. Это число не может быть целым, поскольку 1 для него слишком мала, а 2 – слишком велика. А если вы умножите дробь на дробь, то вы получите другую дробь, но не целое число; поэтому ни одна дробь, помноженная на самое себя, не даст вам 2. Значит, квадратный корень из двух не является ни целым числом, ни дробью. Чем это может быть еще, оставалось тайной, но математики продолжали с надеждой использовать этот пример, говорить о нем, ожидая, что однажды они поймут, о чем они говорят. И в конце концов эти надежды оправдались.
Сходная проблема возникла с тем, что называется «кубический корень из 2». Иными словами, с числом x таким, что x, помноженное на x, помноженное на х равно 2. Некий город, согласно легенде, страдал от разного рода напастей и, наконец, послал гонца к Дельфийскому оракулу, чтобы узнать причину этих несчастий. Бог сообщил, что его статуя в посвященном ему храме в этом городе слишком мала, и он хочет, чтобы статуя была в два раза больше. Жители поспешили выполнить пожелание Господа и сначала решили сделать статую в два раза выше, чем прежняя. Но потом они поняли, что она должна быть также в два раза шире и толще, на что понадобится в восемь раз больше материала, значит на самом деле статуя будет в восемь раз больше. Но это больше, чем приказал оракул, и большая трата денег. Насколько тогда должна быть шире старой новая статуя, если в целом она должна быть в два раза больше? Жители послали гонца к Платону узнать, может ли кто-нибудь из его школы помочь им найти ответ. Платон сформулировал проблему для математиков. Однако лишь несколько столетий спустя они сделали вывод, что данная проблема неразрешима. Конечно, можно найти приблизительное решение, но так же, как и в случае с квадратным корнем из двух, ни одна из дробей не дает точного ответа. Несмотря на то, что проблема не была решена, в поисках ее решения было проделано много полезной работы.
Оставим античность и обратимся к современности, к проблемам, стоящим перед страховыми компаниями. Предположим, вы хотите застраховать свою жизнь с тем, чтобы ваша вдова получила 1000 долларов после вашей смерти. Сколько вы должны платить каждый год? Предположим, что вы в таком возрасте, что среднестатистический мужчина живет еще 20 лет. Если вы платите 50 долларов в год, то в течение 20 лет вы заплатите 1000 долларов, и, на первый взгляд, вы сочтете правильным то, что страховая компания назначит вам ежегодный взнос в 50 долларов. На самом деле это будет слишком высокий взнос, поскольку существует еще процентный доход. Предположим, вы прожили еще 20 лет, ваши первые 50 долларов страховая компания инвестировала в какое-либо дело и получила прибыль; прибыль также была инвестирована, и т. д.; вы можете подсчитать, сколько прибыли принесут ваши 50 долларов за 20 лет постоянного инвестирования. Подсчитайте, что следующие 50 долларов будут инвестироваться в течение 19 лет и тоже принесут прибыль, и т. д. Таким образом, ваши взносы в течение 20 лет принесут страховой компании гораздо больше, чем 1000 долларов. Действительно, если страховая компания получает 4% прибыли со своих инвестиций, ваши ежегодные взносы в 50 долларов принесут ей в течение 20 лет 1500 долларов.
Сделав подобные расчеты, вы узнаете, как нужно делать расчеты в так называемых «геометрических прогрессиях».
«Геометрическая прогрессия» – это ряды чисел, в которых каждое число, кроме первого, является кратным предыдущему. Например, 1,2,4,8,16,… – это геометрическая прогрессия, в которой каждое число является удвоением предыдущего; 1, 3, 9, 27, 81,… – это геометрическая прогрессия, в которой каждое число является утроением предыдущего; 1,1/2,1/4,1/8,1/16,… – это прогрессия, в которой каждое число является половиной предыдущего, и т. д.
Вернемся теперь к нашему доллару, инвестированному исходя из 4% годовых. В конце года это будет 1,04 доллара. В конце второго года у вас будет 1,04 доллара плюс 4% от этой суммы; это 1,04 раза по 1,04, т. е. (1,04)2. В конце третьего года это будет (1,04)3 и т. д. Таким образом, если вы будете платить каждый год по одному доллару в течение 20 лет, то к концу этих 20 лет то, что вы заплатили, станет (1,04)20 + (1,04)19 +… + (1,04)2 + 1,04, что представляет собой геометрическую прогрессию.
Древние греки проявляли большой интерес к геометрическим прогрессиям, особенно к прогрессиям, уходящим в бесконечность. Например, 1/2 +1/4 + 1/8 + 1/16 +…в сумме никогда не дадут 1. Так же обстоит дело и с периодическими десятичными дробями.9999… Все это создает множество загадок, на решение которых уходит очень много времени.
Античная геометрия занималась не только линиями и кругами, но также и «коническими сечениями», которые представляют собой разного рода кривые линии – сочетания плоскости и конуса; иначе их можно определить, как всевозможные формы теней, отбрасываемых кругом на стену. Греки изучали их удовольствия ради, а не для практического использования, которое они презирали. Однако 2000 лет спустя, в XVII в., эти исследования вдруг приобрели огромное практическое значение. Развитие артиллерии показало людям, что если вы хотите попасть в удаленный объект, то должны целиться не прямо в этот объект, а немного выше него. Никто не знал точную траекторию пушечного ядра, но военное командование стремилось это узнать. Галилей, служивший у герцога Тосканского, нашел ответ: пушечные ядра движутся по параболе, представляющей особую разновидность конических сечений. Примерно в то же самое время сделал свое открытие и Кеплер: траекторией движения планет вокруг Солнца является эллипс – другая разновидность конических сечений. Таким образом, все знания, полученные раньше при изучении конических сечений, стали использоваться в военном деле, навигации и астрономии.
Чуть выше я сказал, что конические сечения – это тени кругов. Если у вас есть лампа с круглым отверстием, то вы сами для себя можете сделать различного рода конические сечения. Тень отверстия лампы на потолке (если только он не кривой) будет кругом, а вот его тень на стене будет гиперболой. Если вы возьмете кусок бумаги и подержите над отверстием лампы, то, если вы держите бумагу не точно в горизонтальном положении, тенью будет эллипс; если вы наклоните бумагу еще больше, эллипс станет длиннее и тоньше; первая тень, не являющаяся эллипсом, если вы наклоните бумагу еще больше, будет параболой; а после этого она станет гиперболой. Капли в фонтане падают вниз по параболе, так же, как и камни, падающие с утеса.
С математической точки зрения, как каждый может заметить, эффект теней тот же самый, что у перспективы. Изучение свойств, общих у фигуры со всевозможными тенями, называется «проективной» геометрией. Несмотря на то, что эта разновидность геометрии значительно легче той, которой занимались греки, она была открыта гораздо позже. Одним из первых это сделал Паскаль, к сожалению, решивший, что религиозные медитации важнее математики.
Я до сих пор ничего не говорил об алгебре, которая зародилась во времена поздних александрийских греков, но в целом была разработана сначала арабами, а потом учеными в XVI и XVII вв. Алгебра кажется более сложной, чем геометрия, потому что геометрия имеет дело с конкретными видимыми фигурами, в то время как x и y в алгебре – совершенно абстрактные сущности. Но алгебра всего лишь обобщенная арифметика: когда существует некоторое суждение, истинное в отношении любого числа, то пустой тратой времени будет доказательство истинности этого суждения относительно каждого конкретного числа, поэтому мы говорим «пусть х будет любым числом» и продолжаем наше рассуждение. Предположим, например, вы заметили, что 1 + 3 = 4, что есть 22; 1 + 3 + 5 = 9, что есть У; 1 + 3 + 5 + 7 = 16, что есть 42. Удивившись, вы захотите предположить, не является ли это общим правилом. В этом случае вам нужна алгебра, чтобы выразить все эти конкретные примеры в одном простом вопросе, который вы зададите самому себе: «Всегда ли сумма первых п нечетных чисел равна n2?» Когда вы сможете понять этот вопрос, то легко найдете доказательство тому, что ответом будет да. Если вы не используете букву n, то вынуждены будете использовать очень сложный язык. Вы можете сказать: «Если сложить любое количество нечетных чисел, начиная с 1 и не считая 0, то сумма будет равна квадрату числа сложенных нечетных чисел». Это суждение гораздо труднее понять. Когда же вы сформулируете более сложные вопросы, то вскоре станет практически невозможно понимать их, не используя буквы вместо фразы «любое число».
Даже проблемы, сформулированные относительно конкретных чисел, часто гораздо легче решать, используя вместо числа букву х. В юности я долго ломал голову над следующей загадкой: «Если рыба весит 5 фунтов и половину своего собственного веса, то сколько она весит?». Многие склонны ответить 7,5 фунтов. Если вы начнете рассуждение с «пусть x – вес рыбы» и продолжите «5 фунтов плюс половина x равно х», то очевидно, что 6 фунтов – это половина х, следовательно х равно 10 фунтам. Но эта проблема слишком проста, чтобы решать ее с помощью "х". Возьмем немногим более сложную задачу. Полиция преследует преступника по определенному шоссе, который выехал 10 минут назад; полицейская машина может ехать со скоростью 70 миль в час, а машина преступника только со скоростью 60 миль в час. Сколько времени потребуется полиции чтобы поймать преступника? Ответ, конечно, 1 час. Это «ясно» любому человеку; но если я скажу, что преступник выехал 7 минут назад, его машина может ехать со скоростью 53 мили в час, а полицейская машина со скоростью 67 миль в час, то вы сочтете более удобным начать свое рассуждение таким образом: пусть t – время, необходимое для того, чтобы поймать преступника. Для мальчика или девочки, начинающих изучать алгебру, трудно привыкнуть к алгебраическому использованию букв. Лучше сначала показать ученикам огромное количество конкретных примеров общих формул. Например:
11х11=10х10+10 х2+1;
12 х 12=11 х 11+11 х 2+1;
13 х 13 = 12 х 12 + 12 х 2 + 1 и т. д.;
и в конце концов становится легко понять, что
п плюс 1 х n плюс 1 – это n x n плюс n х 2 плюс 1.
На ранних этапах преподавания алгебры этот процесс нужно повторять с каждой новой формулой.
Одна из необычных черт математики состоит в том, что несмотря на свою огромную практическую полезность, во многих деталях она предстает скорее легкомысленной игрой. Никто не сможет преуспеть в математике, если он не умеет наслаждаться игрой ради самой игры. Любая профессиональная работа выполняется хорошо только теми людьми, кто испытывает удовольствие от этой работы, не говоря о том, что эта деятельность помогает им зарабатывать на жизнь, а ее результат имеет ценность для всего мира. Никто не сможет стать хорошим математиком только для того, чтобы зарабатывать на жизнь, или только для того, чтобы стать полезным гражданином; он должен также получать своего рода удовлетворение от математики, как другие люди получают от решения шахматной задачи или задачи построения мостов. Приведу несколько примеров. Если они вас позабавят, то было бы лучше для вас посвятить некоторое время занятиям математикой; если нет, то – нет.
Помню, что в детстве я с огромным удовольствием открыл для себя формулу суммы того, что называется «арифметической прогрессией». Арифметическая прогрессия – это ряды чисел, в которых каждый член, кроме первого, больше (или меньше), чем предыдущее на определенную величину. Эта определенная величина называется «разность". Ряд 1,3,5,7,… представляет собой арифметическую прогрессию, в которой разность равна 2. Ряд 2, 5, 8,11,… – арифметическая прогрессия, в которой разность равна 3. Теперь предположим что у вас есть арифметическая прогрессия, состоящая из конечного количества членов, и вы хотите знать сумму всех членов этой прогрессии. Как это сделать?
Рассмотрим не очень сложный пример: ряд 4, 8,12,16,… 96, т. е. все числа, меньше 100, делятся на 4. Если вы хотите узнать сумму этих чисел, то вы можете это сделать, сложив все их по порядку. Но можно избежать этой работы с помощью небольшого наблюдения. Первое число – 4, последнее – 96; их сумма равна 100. Второе число 8, предпоследнее – 92; их сумма тоже 100. Становится очевидным, что вы можете разбить числа на пары, и каждая пара в сумме даст 100. В ряду 24 числа, следовательно 12 пар чисел, следовательно сумма всех чисел этого ряда равна 1200. Исходя из этого примера, можно предположить общее правило: чтобы найти сумму арифметической прогрессии, нужно сложить первое и последнее число, а затем умножить на 1/2 количества всех членов прогрессии. Вы можете легко убедиться, что это верно не только для четных чисел, как в приведенном выше примере, но и для нечетных чисел.
Можно также предложить и новую формулировку этой формулы для того случая, если нам неизвестно последнее число прогрессии, а известно только первое число, количество членов и разность. Рассмотрим пример. Предположим, что первое число – 5, разность – 3, и количество членов 21. Тогда последнее число равно 5 + (20 х 3), т. е. 65. Таким образом, сумма первого и последнего членов равна 70, сумма прогрессии равна 1/2 от 70, умноженной на количество членов прогрессии, т. е. 70/2 х 21. Это 35 х 21, т. е. 735. Общее правило таково: прибавь квадрат первого члена к разности, умноженной на количество членов прогрессии минус 1, а затем умножь все это на 1/2 количества членов прогрессии. Это то же самое правило, которому выше была дана иная формулировка.
Рассмотрим теперь другую проблему. Предположим, у вас есть некоторое количество цистерн, каждая из которых представляет собой идеальный куб, т. е. длина, высота и ширина этого куба равны. Предположим, что измерения первой цистерны равны 1 футу, второй – 2 футам, третьей – 3 футам и т. д. Вы хотите узнать, какое количество кубических футов бензина поместится во все эти цистерны. В первую поместится 1 кубический фут, во вторую – 8, в третью – 27, в четвертую – 64, в пятую – 125, в шестую – 216, и т. д. Таким образом, то, что вы хотите знать, представляет собой сумму кубов стольких-то чисел. Вы заметили, что
1 amp; 8 = 9, т. е. 3 х 3, а 3 – это 1/2 от 2 х 3
1 amp; 8 amp; 27 = 36, т. е. 6 х б, а б – это 1/2 от 3 х 4
1 amp;8 amp;27 amp;64=100,т.е.10 х 10, а 10 – это 1/2 от 4 х 5
1 amp; 8 amp; 27 amp; 64 amp; 125 = 225, т. е. 15 х 15,а 15 – это 1/2 от 5 х б
1 amp; 8 amp; 27 amp; 64 amp; 125 amp; 216 = 441, т. е. 21 х 21, а 21 – это 1/2 от 6 х 7
На основании этого примера можно вывести правило для суммы кубов стольких-то целых чисел. Правило таково: умножь число рассматриваемых целых чисел на число, которое больше его на единицу, полученный результат подели пополам, а полученное число возведи в квадрат. Вы легко сможете убедиться в том, что эта формула верна с помощью так называемой «математической индукции». Это значит:
нужно предположить, что ваша формула верна для определенного числа, и доказать, что в этом случае она верна и для следующего числа. Докажем, что наша формула верна для 1. Следовательно, она верна для 2, и для 3, и т. д. Это весьма эффективный метод, с помощью которого были доказаны большинство свойств целых чисел. И часто, как и в приведенном выше примере, это позволяет вам сформулировать предположение в виде теоремы.
Рассмотрим другой вид задач, а именно задач «комбинаций и перестановок». Довольно часто они приобретают значимость, но мы начнем с простых примеров. Предположим, хозяйка хочет организовать вечер с ужином, на который она хотела бы пригласить 20 человек, но одновременно она может пригласить только 10. Каковы же варианты выбора? Очевидно, что существует 20 вариантов выбора первого гостя; когда он выбран, остается 19 вариантов выбрать второго и т. д. Когда выбрано 9 гостей, остается 11 вариантов, следовательно, последний гость может быть выбран, исходя из 11-ти вариантов. Итак, полное число вариантов равно
20 х 19 х 18 х 17 х 16 х 15 х 14 х 13 х 12 х 11.
Это довольно большое число; просто удивительно, почему хозяйки не путаются. Мы можем упростить ответ, используя так называемые «факториалы».
Факториал 2 обозначает произведение всех чисел до 2, т. е. 2;
Факториал 3 обозначает произведение всех чисел до 3, т. е. б;
Факториал 4 обозначает произведение всех чисел до 4, т. е. 24;
Факториал 5 обозначает произведение всех чисел до 5, т. е. 120;
и т.д.
Сейчас число вариантов выбора в нашем примере представлено факториалом 20, разделенным на факториал 10. Это задача и называется задачей «комбинаций». Общее правило таково, что число способов, которыми вы можете выбрать m вещей из n вещей (n» m), равно факториалу n, разделенному на факториал m.
Теперь рассмотрим «перестановки», где главная проблема заключается не в выборе вещей, а в их организации. Предположим, наша хозяйка выбрала 10 своих гостей и думает о том, как их посадить за столом. Она и ее муж сядут, как всегда, по бокам стола, а гости – на остальные 10 мест вокруг стола. Таким образом, для первого гостя существует 10 вариантов, для второго – 9 и т. д.; сумма вариантов равна факториалу 10, т. е. 3 628 800. К счастью, социальные правила, например, посадить мужчин напротив женщин или посадить мужей отдельно от жен, уменьшают варианты до 4 или 5.
Рассмотрим еще одну задачу в разделе «комбинации». Предположим, у вас есть некоторое количество предметов, и вы можете выбрать те, что вам нравятся – все или не одного. Сколько же у вас вариантов выбора?
Если у вас есть один предмет А, то у вас 2 варианта выбора – A или ничего.
Если у вас есть два предмета А и В, то у вас 4 выбора – А и В, или А, или В, или ничего.
Если у вас есть три предмета A B и C, то у вас 8 вариантов выбора:
A, B и C, A и B, A и C, B и C, A В, С или ничего.
Если у вас есть четыре предмета, то у вас 16 вариантов выбора. Общее правило таково, что число вариантов выбора равно 2, умноженному на себя столько раз, сколько предметов. Это, на самом деле, очевидно, потому что у вас есть два варианта по отношению к каждому предмету, а именно выбрать его или не выбрать, и когда вы сделали свой выбор по отношению к одному предмету, у вас остается полная свобода в отношении других.
Задачи комбинаций и перестановок имеют огромные возможности применения. Одна из них – это теория наследственности Менделя. Первые биологи, возродившие работы Менделя, практически не знали математики, но они обнаружили определенные соотношения чисел, постоянно фигурировавшие в опытах. Один из них рассказал об этом другу-математику, который сразу отметил, что соотношения этих чисел соответствуют некоторым соотношениям чисел, фигурирующим в теории комбинаций, и когда это было подмечено, то сразу стала видна и причина. Сегодня в теории Менделя широко используется математика. Возьмите, например, такую задачу: если определенная рецессивная характеристика дает вам преимущество в борьбе за существование, то будет ли она стремиться стать доминантной в популяции, в которой она появляется лишь изредка? А если это так, то сколько потребуется времени для того, чтобы определенный процент популяции приобрел эту характеристику, если мы знаем, какой процент популяции обладает этой характеристикой сегодня? Подобные проблемы часто имеют большое практическое значение, например, по отношению к распространению слабоумия или других психических дефектов.
Большая заслуга современной, по сравнению с античной, математики заключается в том, что она может оперировать с постоянными изменениями. Единственный вид движения, с которым могла оперировать античная или средневековая математика, было равномерное движение по прямой линии или по кругу. Аристотель говорил, что для земных тел «естественно» движение по прямым линиям, а для небесных тел – по кругу; эта точка зрения сохранялась вплоть до Кеплера и Кишлея, показавших, что она не соответствует фактам. Техническим инструментом для оперирования с постоянным изменением является дифференциальное и интегральное исчисления, изобретенные независимо друг от друга Ньютоном и Лейбницем.
Использование вычислений можно проиллюстрировать, рассмотрев, что имеется в виду под понятием «скорость». Предположим, что вы сели в поезд, который с опозданием вышел с одной станции и все еще набирает скорость, и вы хотите знать, с какой скоростью он движется в настоящий момент времени. Предположим далее, что вы знаете, на каком расстоянии расположены телеграфные столбы, и можете подсчитать расстояние, которое прошел поезд за определенное время. Допустим, вы обнаружили, что за секунду, истекшую с того момента времени, когда вы захотели узнать скорость поезда, он прошел 44 фута. 44 фут/с – это 30 миль/ч, поэтому вы можете сказать, что «за час мы проезжаем 30 миль». Но несмотря на то, что вы подсчитали среднюю скорость за секунду, эта скорость не равна той скорости, с которой поезд шел в самом начале этой секунды, потому что он ускорялся и к концу второй секунды шел уже с большей скоростью. Если бы у вас была возможность делать достаточно точные измерения, то вы обнаружили бы, что в первую четверть секунды скорость поезда была 10 футов, а не 11. Следовательно скорость поезда в начале секунды была скорее 40 футов, а не 44. Но 40 фут/с – это все равно слишком много, потому что даже за эту четверть секунды произошло некоторое ускорение. Если бы у вас была возможность измерять точно малые отрезки времени и расстояния, то чем короче были бы эти отрезки времени, тем более точны вы были бы в своих расчетах. Однако вы никогда не будете совершенно точны.
Что же тогда понимается под скоростью поезда в настоящий момент времени? Ответ на этот вопрос можно дать лишь с помощью дифференциального исчисления. Вы составляете математический ряд все более и более точных аппроксимаций измерений скорости поезда за все более и более короткие промежутки времени. Если вы берете одну секунду, то приблизительное измерение скорости поезда равно 44 футам; если вы берете четверть секунды, то – 40 футам. Предположим, что на железнодорожных станциях стоят люди с секундомерами; они подсчитали, что за десятую долю секунды скорость поезда была 39,2 фут/с; за двенадцатую долю секунды – 39,1 и т. д. Вообразим невозможную точность измерения и наблюдения и предположим, что наблюдатель подсчитал, что скорость поезда всегда несколько выше 39, но никогда не превышает любое число, большее чем 39. В таком случае 39 называют «пределом» ряда чисел, и мы говорим, что 39 фут/с – это скорость поезда в настоящий момент времени. Это определение скорости в момент времени.
«Дифференциальное исчисление» – математический инструмент, с помощью которого, зная расположение тела в каждый момент времени, можно измерить его скорость в каждый момент времени. «Интегральное исчисление» имеет дело с противоположной задачей: зная направление и скорость движения тела в каждый момент времени, можно вычислить, где оно будет в каждый момент времени, исходя из первоначальной точки движения. Обе разновидности исчисления называются «исчислением».
Простым примером задач, решаемых с помощью интегрального исчисления, является так называемая «кривая погони». Фермер и его собака находятся на квадратном поле, углы которого A, B, C, D. В первом варианте собака находится в точке A, а фермер – в точке В. Фермер движется к точке С и видит, что собака с постоянной скоростью бежит к тому месту, в котором в данный момент времени находится ее хозяин. По какой кривой движется собака?
Более показательным примером является движение планет. Посредством наблюдения Кеплер доказал, что траекторией движения планет вокруг Солнца является эллипс, и открыл взаимосвязь расстояния планеты до Солнца и времени, в течение которого эта планета совершает полный оборот вокруг Солнца. Это открытие позволило Ньютону с помощью дифференциального исчисления определять скорость движения планеты в любой точке ее траектории; эта скорость непостоянна – она увеличивается по мере приближения планеты к Солнцу. Затем, еще раз использовав дифференциальное исчисление, Ньютон смог определить ускорение планеты в каждый момент времени, т. е. изменение ее скорости и по величине, и по направлению. Он обнаружил, что любая планета в любой момент времени обладает ускорением в направлении Солнца, которое обратно пропорционально квадрату ее расстояния до Солнца.
Затем с помощью интегрального исчисления Ньютон проанализировал другую задачу: если в любой момент времени тело обладает ускорением в направлении Солнца, которое обратно пропорционально квадрату его расстояния до Солнца, то по какой траектории оно будет двигаться? Ньютон доказал, что тело за равные промежутки времени будет покрывать равные по площади конические сечения. Наблюдение показало, что для планет и некоторых комет этим коническим сечением является эллипс; для некоторых других комет траекторией может быть гипербола. Это дополнение стало завершающим этапом в доказательстве закона тяготения Ньютона.
Однако исчисление применяется не только к изменению во времени. Оно применимо в любом таком случае, когда одна величина является «функцией» другой. Понятие «функции» очень важно, и я попытаюсь его объяснить.
Возьмем изменяющуюся величину. Другая величина называется ее «функцией» в том случае, если при заданном значении одной величины значение другой нужно вычислить. Например, если вам нужно перевезти определенное количество нефти на поезде, то число необходимых для этой перевозки вагонов является «функцией» количества нефти; если вам нужно накормить армию, то количество необходимых продуктов является «функцией» числа солдат. Если тело падает в вакууме, то расстояние, преодолеваемое им при падении, является «функцией» времени, в течение которого оно падало. Число квадратных футов ковра для данной квадратной комнаты является «функцией» длины стены комнаты, так же как и количество жидкости, которую можно залить в кубический контейнер. В одном случае функцией является квадрат, в другом – куб: для комнаты, длина стены которой в два раза больше, чем в данной, нужен в четыре раза больше ковер; а в контейнер, который в два раза выше данного, можно залить в восемь раз больше жидкости, если и другие его параметры также увеличены в два раза.
Некоторые функции очень сложны. Ваши налоги являются функцией вашего дохода, но лишь специалисты знают, какой конкретно функцией. Предположим, какой-то математически образованный специалист предложил использовать простую функцию, например, ваши налоги должны быть пропорциональны квадрату вашего дохода. Он дополнил свое предложение другим: ни один доход после уплаты налогов не должен превышать 25 000$. Как же эти предложения будут работать? Налоги должны быть одной сотой или тысячной частью квадрата вашего дохода в долларах. Для доходов, меньших, чем квадратный корень из 1000$ (это примерно 32$), налог должен быть меньше одного цента, и его невозможно будет собрать; для доходов в 1000$ налог будет 10$; для 2000$ – 40$; для 10 000$ – 1000$ и для 50 000$ – 25 000$. После этих выплат любое увеличение вашего дохода сделает вас беднее. Если ваш доход равен 100 000$, то налог будет равен вашему доходу, и вы будете разорены. Не думаю, что кто-либо будет защищать такую налоговую политику.
Для любой функции переменной x небольшое увеличение x будет сопровождаться небольшим увеличением или уменьшением функции, если функция дискретная. Например, пусть х – радиус круга, а функция – площадь круга, пропорциональная квадрату радиуса. Если радиус несколько увеличивается, то увеличивается площадь круга;
увеличение достигается умножением увеличения радиуса на окружность. Дифференциальное исчисление предоставляет степень (rate) увеличения функции при заданном небольшом увеличении переменной. С другой стороны, если вам известна степень увеличения функции относительно переменной, то интегральное исчисление покажет вам, каково будет в целом увеличение или уменьшение функции при изменении значений переменной. Самым простым из важнейших примеров этому является падение тела в вакууме. В данном случае ускорение тела является постоянной величиной; иными словами, увеличение скорости в любой данный момент времени пропорционально времени. Следовательно, скорость в любой момент времени пропорциональна времени, в течение которого тело падает. Исходя из этого интегральное исчисление показывает, что расстояние, преодолеваемое им при падении, пропорционально квадрату времени падения. Это можно доказать, и не используя интегрального исчисления, что было сделано Галилеем; однако в более сложных случаях интегральное исчисление является ключевым механизмом.
Математика, по крайней мере по ее собственному притязанию, является точным инструментом, и в тех случаях, когда она применяется к реальному миру, всегда существует неоправданное допущение точности. В природе не существует совершенных кругов или треугольников; планеты в реальности не движутся по точным эллипсам, а если бы и двигались, то мы бы об этом не знали. Наши возможности измерения и наблюдения ограничены. Я не говорю о том, что они имеют определенные пределы; напротив, технические достижения постоянно уменьшают эти ограничения. Однако невозможно, чтобы техника работала безошибочно или вне всяких ограничений, потому что какой бы аппарат мы не изобрели, мы, в конце концов, зависим от собственных ощущений, которые не могут различить две очень похожие вещи. Легко доказать, что существуют различия, невоспринимаемые нами. Возьмем, например, три очень близкие оттенка цвета А В и С. Возможно, вы не видите никакого различия между А и В, или между В и С, но видите различие между А и С. Это показывает, что должны существовать невоспринимаемые различия между A и B и между B и C. То же самое будет истинно и в том случае, если Л, В и С будут иметь почти одинаковую длину. Измерение длин, каким бы точным оно ни было, всегда должно оставаться приблизительным, хотя и очень близким приближением.
По этой причине точные научные измерения всегда даются с учетом «вероятной ошибки». Это означает, что данный результат скорее всего не будет выходить за пределы установленной области значений вероятной ошибки. Практически он более или менее точен, но маловероятно, что он не точен больше, чем на величину вероятной ошибки. Хотелось бы, чтобы и в других областях люди допускали то, что их мнения подвержены той или иной вероятной ошибке; но в действительности люди более догматичны в тех случаях, в которых меньше всего оснований для определенности и уверенности. Читатель, вспомнив наше определение «скорости», увидит, что оно предполагает невозможность мгновенного наблюдения. С эмпирической точки зрения, не может существовать такого явления, как мгновенная скорость, потому что для наших измерений времени и расстояния существуют определенные пределы. Предположим, что мы разработаем нашу технику до такого уровня, что сможем измерить сотую или тысячную долю секунды и сотую или тысячную долю сантиметра. В таком случае мы сможем сказать, на сколько сотых или тысячных долей сантиметра продвинулось очень маленькое тело, если оно движется со скоростью меньше, чем сантиметр в секунду. Но мы не сможем сказать, что оно делало в течение этого очень короткого промежутка времени: оно могло двигаться равномерно; оно могло сначала двигаться медленнее, а затем ускориться, или наоборот; оно могло также преодолеть все расстояние за один прыжок. Это последняя гипотеза, кажущаяся странной, на самом деле является частью квантовой теории как наилучшее объяснение некоторых явлений. Мы привыкли рассматривать как само собой разумеющееся, что пространство, время и движение непрерывны, но мы не можем знать этого, потому что не воспринимаем очень небольшие непрерывности. Вплоть до недавнего времени гипотеза непрерывности была рабочей; сегодня в ней начинают сомневаться, в частности в том, что касается очень маленьких явлений.
Точность математики представляет собой абстрактную логическую точность, которая теряется, как только математические размышления применяются к реальному миру. Платон думал (и многие последовали за ним в этом убеждении), что если математика в определенном смысле истинна, то должен существовать идеальный мир, своего рода математический рай, где все происходит именно так, как описывается в учебниках по геометрии. Философ, попадая в рай (а туда, согласно Платону, попадают только философы), будет удовлетворен видом того, чего ему не хватало на Земле: совершенно прямые линии, совершенные круги, совершенные двенадцатигранники и все остальное, необходимое для блаженства. Тогда он поймет, что математика, хотя и неприменима к мирской жизни, представляет собой видение – одновременно и вспоминающее, и пророческое – лучшего мира, из которого вышли мудрецы и куда они возвращаются. Арфы и короны были менее интересны для афинского аристократа, чем для смиренного народа, создавшего христианскую мифологию. Однако христианские теологи, в противовес общим представлениям христиан, принимали многое из платоновского описания рая. В наши дни, когда такого рода вещи стали невозможными, точность стала приписываться Природе, а ученые не сомневаются в том, что универсум функционирует именно так, как его описал Ньютон. Поскольку ньютоновский мир – это мир, созданный Богом, грязный, неточный и т. п. мир, каким мы его знаем, был бы недостоин Создателя. Лишь недавно проблема математической точности, не соответствующей приблизительному характеру знания, получаемого с помощью органов чувств, получила формулировку, полностью свободную от всех теологический аллюзий.
Результатом недавних исследований этой проблемы стало привнесение во все вещи приблизительности и неточности, даже в традиционно священные области логики и арифметики. Для логиков старших поколений эти вопросы упрощались их верой в существование неизменных видов. Ими могут быть кошки и собаки, лошади и коровы; пара из каждого вида была создана Богом, пара из каждого вида спаслась в ковчеге во время потопа, пара из каждого вида вместе всегда производят потомство того же вида. Что касается человека, то не был ли он отличен от животных наличием разума, бессмертной души и знанием добра и зла? Таким образом, значения таких слов, как «собака», «лошадь», «человек», были четко определены, и любое живое существо, к которому применимо одно из этих слов, было четко отделено от других живых существ. На вопрос: «Это лошадь?», – всегда существовал недвусмысленный и бесспорный ответ. Однако для последователя эволюционной теории все меняется. Он считает, что лошади постепенно эволюционировали из животных, которые определенно не были лошадьми, и на каком-то этапе этой эволюции существовали животные, которые не были определенно лошадьми или нелошадьми. То же самое истинно и для человека. Разум по мере своего существования постепенно совершенствовался. По геологическим находкам нельзя судить, имели ли наши далекие предки бессмертные души или знание о добре и зле, даже если допустить, что мы обладаем всеми этими преимуществами. Найдено множество костей, определенно принадлежащих более или менее человекоподобным двуногим существам, но можно ли этих двуногих назвать «людьми» – это вопрос чистого соглашения.
Таким образом выясняется, что на самом деле мы не знаем, что имеем в виду под обычными повседневными словами, такими как «кошка» и «собака», «лошадь» и «человек». Того же рода неопределенность существует и в отношении наиболее точных научных терминов таких, как «метр» и «секунда». Метр определяется как расстояние между двумя отметками на определенном бруске в Париже при определенной температуре бруска. Однако эти отметки не являются точками, и температура не может быть измерена с совершенной точностью. Следовательно, мы не можем знать точно длину метра. В отношении большинства длин мы можем быть уверены, что они длиннее или короче метра. Но в отношении некоторых длин мы не можем с уверенностью сказать, длиннее они или короче метра, или же они точно метр длиной. Секунда определяется, как время размаха маятника определенной длины или как определенная часть дня. Однако мы не можем точно измерить ни длину маятника, ни длину дня. Таким образом, в отношении метра и секунды существует та же самая проблема, что и в отношении лошадей и собак, а именно, что мы не знаем точно, что обозначают эти слова.
Вы можете сказать: «Тем не менее, ничто не поколеблет мою веру в то, что дважды два четыре». В значительной мере вы правы, за исключением пограничных случаев; только в пограничных случаях вы Усомнитесь в том, является ли какое-то конкретное животное собакой или какая-то конкретная длина – меньше метра. Два должно быть Два чего-либо, а утверждение «дважды два четыре» бесполезно, если оно ни к чему не применимо. Две собаки плюс две собаки – это определенно четыре собаки, но в некоторых случаях вы усомнитесь являются ли две из них собаками. Вы можете сказать: «Хорошо, в любом случае это четыре животных». Однако существуют микроорганизмы, относительно которых трудно сказать, являются ли они животными или растениями. «Хорошо, – скажете вы, – тогда это просто живые организмы». Однако существуют вещи, относительно которых трудно сказать, являются они живыми организмами или нет. Тогда вы вынуждены будете сказать: «Две сущности и две сущности – это четыре сущности». Когда вы скажете мне, что вы имеете в виду под термином «сущность», мы сможем принять это утверждение.
Таким образом, понятия, в целом, обладают определенной областью, к которой они применимы в полной мере, и определенной областью, к которой они точно неприменимы. Однако понятия, претендующие на точность, такие как «метр» и «секунда», несмотря на то, что они обладают широкой областью применения (в пределах приблизительной области), к которой они точно неприменимы, совершенно не обладают той областью, к которой они применимы в полной мере. Если они должны применяться в полной мере, то нужно пожертвовать претензией на точность.
Подведем итог нашего обсуждения: математика не обладает той точностью, на которую претендует, она так же приблизительна, как и все остальное знание. Тем не менее, это не имеет никакого значения с практической точки зрения, поскольку в любом случае все наше знание внешнего мира лишь приблизительно.
Я решил обсудить этот вопрос, поскольку многие люди считают, что математика претендует на знание высшего рода, и эта претензия – в тех, кто убежден, что она не оправданна, – рождает сопротивление, которое мешает их обучению математике и восприятию математического рассуждения. Абсолютная точность математики недостижима. Она существует – в той мере, в какой она существует, – лишь благодаря тому факту, что математическое знание на самом деле вербальное, а не эмпирическое, знание, и язык, с помощью которого это знание выражается, довольно сложен.