Кошка Шредингера
Кошка Шредингера
Наконец, обратимся к вопросу, который преследует нас с самого начала нашего описания. Почему мы не наблюдаем квантовых линейных суперпозиций объектов классических масштабов, например, крикетных шаров, находящихся одновременно в двух местах? Что заставляет определенные конфигурации атомов срабатывать как «измерительное устройство», так что R-процедура сменяет U? Разумеется, любая часть измерительного прибора сама по себе является частью физического мира и состоит из тех самых квантовомеханических компонент, поведение которых должен исследовать прибор. Почему бы не рассматривать измерительный прибор вместе с физической системой как единую составную квантовую систему? При таком подходе нет загадочного «внешнего» измерения. Составная система должна просто эволюционировать в соответствии с U. Но эволюционирует ли она именно так? Действие U-процедуры на составную систему полностью детерминистично и не оставляет места для вероятностных неопределенностей R-типа, встречающихся в «измерении» или «наблюдении», которые составная система производит над собой! В сказанном есть явное противоречие, которое проявляется особенно наглядно в знаменитом мысленном эксперименте, предложенном Эрвином Шредингером [1935]: в парадоксе «кошка Шредингера».
Представьте себе герметичный контейнер, спроектированный и построенный столь тщательно, что сквозь его стенки ни внутрь, ни наружу не проходит никакое физическое воздействие. Предположим, что внутри контейнера находится кошка, а также устройство, приводимое в действие («запускаемое») некоторым квантовым событием. Если это событие происходит, то устройство разбивает ампулу с синильной кислотой, и кошка погибает. Если событие не происходит, то кошка продолжает жить. В первоначальной версии Шредингера квантовым событием, запускающим устройство, был распад радиоактивного атома. Позвольте мне слегка модифицировать первоначальную версию Шредингера и выбрать в качестве квантового события, запускающего устройство, фотон, который, попадая в фотоэлемент, приводит его в действие — фотон, испущенный некоторым источником света в предопределенном состоянии и отраженный от полупосеребренного зеркала (рис. 6.33).
Рис. 6.33. «Кошка Шредингера» — с дополнениями
Отражение от зеркала расщепляет волновую функцию фотона на две отдельные части, одна из которых отражается, а другая проходит сквозь зеркало. Отраженная часть волновой функции фотона фокусируется на фотоэлементе так, что если фотон регистрируется фотоэлементом, то это означает, что он отразился. В этом случае синильная кислота выделяется и кошка погибает. Если же фотоэлемент не срабатывает, то это означает, что фотон прошел сквозь полупосеребренное зеркало до стенки контейнера, расположенной за зеркалом, и кошка осталась жива.
С точки зрения (довольно рискованного) наблюдателя, находящегося внутри контейнера, именно таким было бы описание событий, происходящих внутри контейнера. Либо считается, что фотон отразился, так как по свидетельству наблюдателя фотоэлемент зарегистрировал фотон, и кошка погибла, либо считается, что фотон прошел сквозь зеркало, так как по свидетельству наблюдателя фотоэлемент не зарегистрировал фотон, и кошка осталась жива. Либо одно, либо другое действительно происходит: реализуется R-процедура, и вероятность каждой возможности составляет 50 % (потому что зеркало полупосеребренное). Но взглянем теперь на события с точки зрения наблюдателя, находящегося снаружи контейнера. Мы можем считать, что начальный вектор состояния содержимого контейнера был «известен» наблюдателю до того, как контейнер был герметически запечатан. (Я отнюдь не хочу сказать, что вектор состояния содержимого контейнера мог быть известен на практике, но ничто в квантовой теории не утверждает, что он не мог бы в принципе быть известен наблюдателю.) Согласно внешнему наблюдателю никакое «измерение» в действительности не производилось, поэтому вся эволюция вектора состояния должна была бы происходить в соответствии с U-процедурой. Фотон испускается источником в определенном состоянии (в этом оба наблюдателя сходятся во мнении), и его волновая функция расщепляется на две части с амплитудой 1/?2 для каждой из частей (тогда квадрат модуля действительно даст вероятность 1/2). Так как все содержимое контейнера рассматривается внешним наблюдателем как одна квантовая система, линейная суперпозиция альтернатив должна выполняться вплоть до масштабов кошки. Существует амплитуда 1/?2 того, что фотоэлемент зарегистрирует фотон, и амплитуда 1/?2 того, что он фотон не зарегистрирует. Обе альтернативы должны быть представлены в состоянии и участвовать в квантовой линейной суперпозиции с равными весами. С точки зрения внешнего наблюдателя кошка есть не что иное, как линейная суперпозиция дохлой и живой кошек!
Убеждены ли мы в том, что в действительности все обстоит именно так? Сам Шредингер ясно и определенно заявил о том, что так не считает. Действительно, свое мнение он аргументировал тем, что U-npoцедура квантовой механики не должна применяться к чему-нибудь столь большому или столь сложному, как кошка. При попытке применить U-процедуру к столь большому и сложному объекту уравнение Шредингера где-то должно утратить силу. Разумеется, Шредингер имел право рассуждать так о своем собственном уравнении, но все остальные из нас лишены такой прерогативы! Наоборот, многие физики (в действительности большинство физиков) склонны считать, что в настоящее время имеется весьма много экспериментальных фактов, свидетельствующих в пользу U-процедуры, и нет ни одного экспериментального факта, который свидетельствовал бы против U, поэтому мы не имеем никакого права отказываться от этого типа эволюции даже на уровне кошки. Если принять эту точку зрения, то мы, кажется, будем вынуждены прийти к весьма субъективному представлению о физической реальности. Для внешнего наблюдателя кошка действительно есть не что иное, как линейная комбинация дохлой и живой кошек, и только когда контейнер, наконец, будет вскрыт, вектор состояния кошки коллапсирует в вектор одного из этих двух состояний. С другой стороны, для внутреннего наблюдателя (надлежащим образом защищенного от воздействия синильной кислоты) вектор состояния кошки коллапсировал бы гораздо раньше, и линейная комбинация внешнего наблюдателя
|?) = 1/?2 {|живая) + |дохлая)}
не имела бы смысла. Создается впечатление, что вектор состояния в конечном счете существует «только в воображении» наблюдателя!
Но можем ли мы принять такую субъективную точку зрения на вектор состояния? Предположим, что внешний наблюдатель не просто «заглядывает» в контейнер, а производит некую более изощренную процедуру. Предположим также, что, исходя из того, что он знает о начальном состоянии внутри контейнера, внешний наблюдатель сначала использует некоторый быстродействующий компьютер, чтобы на основании уравнения Шредингера вычислить, какое состояние действительно должно установиться внутри контейнера, и получить («правильный») ответ |?) (где |?) действительно включает в себя линейную суперпозицию дохлой кошки и живой кошки). Предположим далее, что внешний наблюдатель выполняет над содержимым контейнера тот самый эксперимент, который позволяет отличить состояние |?) от любого ортогонального ему состояния. (Как было показано выше, по правилам квантовой механики внешний наблюдатель в принципе может выполнить такой эксперимент, хотя осуществить его на практике было бы чрезвычайно трудно.) Вероятности двух исходов: «да, находится в состоянии |?)» и «нет, находится в состоянии, ортогональном |?)» — составляли бы, соответственно, 100 % и 0 %. В частности, для состояния |X) = |дохлая) — |живая), ортогонального |?), вероятность была бы равна 0. Невозможность состояния |X) в результате эксперимента может возникнуть только потому, что обе альтернативы |дохлая) и |живая) сосуществуют друг с другом.
То же самое можно было бы утверждать и в том случае, если бы мы подобрали соответствующим образом длины путей фотона (или плотность посеребренного слоя на поверхности зеркала), так чтобы вместо линейной суперпозиции состояний |дохлая) + |живая) мы имели бы некоторую другую комбинацию, например, |дохлая) — i |живая) и т. д. Все эти различные комбинации приводят к различным экспериментальным следствиям (в принципе!). Таким образом уже говорится не «просто» о некоторой форме сосуществования межцу жизнью и смертью, от которой зависит судьба нашей несчастной кошки. Допустимы все возможные комплексные комбинации, и все они (в принципе) отличимы одна от другой! Однако наблюдателю, находящемуся внутри контейнера, все эти комбинации представляются несущественными. Кошка либо жива, либо мертва. Каким образом мы можем придать смысл такого рода несоответствию? Я кратко приведу несколько различных точек зрения, высказанных по этому (и аналогичным) вопросу, хотя не подлежит сомнению, что я не смогу всем им дать равнозначную оценку.
Данный текст является ознакомительным фрагментом.