Зачем нужна квантовая теория гравитации?

Зачем нужна квантовая теория гравитации?

Что еще осталось узнать о мозге и мышлении такого, чего мы не выяснили в предыдущей главе? Хотя мы уже кратко рассмотрели некоторые из всеобъемлющих физических принципов, лежащих в основе направленности воспринимаемого нами «потока времени», нам все же пока не удалось понять не только почему мы воспринимаем время как нечто текущее, но даже почему мы вообще его воспринимаем. Я считаю, что тут необходимы гораздо более радикальные идеи. До сих пор мое изложение особым радикализмом не отличалось, хотя в некоторых случаях расстановка акцентов была далека от традиционной. Мы ознакомились со вторым началом термодинамики, и я попытался убедить читателя в том, что этот закон — данный нам в виде, выбранном самой природой, — уходит своими корнями в чрезвычайно сильное геометрическое ограничение на происхождение вселенной в результате Большого взрыва — гипотезу о вейлевской кривизне. Некоторые космологи предпочитают интерпретировать это исходное ограничение иначе, но такого рода ограничение на начальную сингулярность действительно является необходимым. Выводы, которые я собираюсь сделать из этой гипотезы, будут гораздо менее традиционными, чем сама гипотеза. Я утверждаю, что потребуются изменения в самих основах квантовой теории!

Эти изменения должны сыграть свою роль при объединении квантовой механики с общей теорией относительности, т. е. в рамках искомой квантовой теории гравитации. Большинство физиков не считают необходимым что-либо менять в квантовой теории при ее объединении с общей теорией относительности. Более того, они утверждают, что на пространственных масштабах, имеющих значение для нашего мозга, эффекты любой квантовой теории гравитации пренебрежимо малы! Они отмечают (и весьма резонно), что хотя такого рода физические эффекты действительно могут оказаться существенными на абсурдно малых пространственных масштабах, сравнимых с так называемой планковской длиной[188] что составляет 10 -35 м — т. е. примерно в 100 000 000 000 000 000 000 раз меньше размера самой маленькой из субатомных частиц, — эти эффекты тем не менее никоим образом напрямую не затрагивают явления, происходящие на много-много бо?льших «обычных» пространственных масштабах, от 10 -12 м и более, там, где правят бал химические и электрические процессы, важные для деятельности мозга. Собственно говоря, даже классическая (то есть неквантовая) теория гравитации почти никак не затрагивает эти электрические и химические процессы. Если классической гравитацией можно пренебречь, то какое может иметь значение любая ничтожно малая «квантовая поправка» к классической теории? Более того, поскольку отклонения от квантовой теории до сих пор не наблюдались, то тем более представляется лишенной всяких оснований сама мысль о каком бы то ни было влияний на процессы мышления любого ничтожно малого гипотетического отклонения от стандартной квантовой теории!

Я же буду рассуждать совсем иначе. Меня интересует не столько влияние квантовой механики на теорию структуры пространства-времени (теорию относительности Эйнштейна), сколько возможное обратное влияние эйнштейновской теории пространства-времени на саму структуру квантовой механики. Я хочу подчеркнуть, что предлагаемая мною точка зрения нетрадиционна. Нетрадиционным является предположение о самой возможности влияния общей теории относительности на структуру квантовой механики! Традиционная физика относится с большим предубеждением к любым попыткам что-либо изменить в стандартной структуре квантовой механики. Несмотря на, по-видимому, непреодолимые трудности, возникающие при попытках непосредственного применения правил квантовой механики к теории Эйнштейна, работающие в этой области исследователи, как правило, делали отсюда вывод о необходимости корректировки теории Эйнштейна, а не квантовой механики[189]. Я же придерживаюсь практически противоположной точки зрения и считаю, что проблемы самой квантовой теории носят фундаментальный характер. Вспомним о несовместимости двух основных ее процедур — U и R (U подчиняется совершенно детерминистскому уравнению Шредингера — это так называемое уравнение унитарной эволюции, a R представляет собой вероятностную редукцию вектора состояния, необходимость в которой возникает всякий раз, когда предполагается, что было сделано «наблюдение»). По-моему, эту несовместимость нельзя адекватно разрешить простой подходящей «интерпретацией» квантовой механики (хотя эта точка как раз и является господствующей), — ее устранение возможно лишь в рамках новой теории, коренным образом отличной от существующей, в которой процедуры U и R будут рассматриваться как различные (и очень хорошие) приближения к более всеобъемлющей и точной единой процедуре. Моя точка зрения, следовательно, состоит в том, что даже такая изумительно точная теория, как квантовая механика, потребует изменений, и что именно теория относительности Эйнштейна позволит лучше всего понять характер этих изменений. Я пойду еще дальше, утверждая, что речь идет именно об искомой квантовой теории гравитации, одним из компонентов которой должна как раз стать предполагаемая единая процедура U/R.

С другой стороны, с общепринятой точки зрения любые прямые следствия квантовой теории гравитации должны иметь более эзотерический характер. Я уже упоминал об ожидаемом радикальном изменении структуры пространства-времени на абсурдно малых масштабах порядка планковской длины. Существует мнение (и, по-моему, вполне обоснованное), что квантовая теория гравитации должна сыграть фундаментальную роль в окончательном установлении природы наблюдаемого «зоопарка элементарных частиц». Например, сейчас у нас нет хорошей теории, которая бы объяснила, почему массы частиц именно таковы, каковы они есть — а ведь понятие «массы» теснейшим образом связано с понятием гравитации. (Действительно, единственное действие массы — быть «источником» гравитации.) К тому же не без оснований считается, что (согласно идее, выдвинутой где-то около 1955 года шведским физиком Оскаром Клейном) правильная квантовая теория гравитации обязана устранить расходимости, преследующие обычную квантовую теорию поля (см. Глава 6. «Квантовая теория поля»). Физика представляет собой единое целое, и правильная квантовая теория гравитации, когда она, наконец, будет построена, должна стать основой нашего досконального понимания универсальных законов природы.

Мы, однако, пока еще далеки от такого понимания. Более того, вне всякого сомнения любая гипотетическая квантовая теория гравитации не будет иметь практически никакого отношения к явлениям, управляющим поведением мозга. Особенно далеки от деятельности мозга могут оказаться те (общепринятые) аспекты квантовой теории гравитации, которые необходимы для выхода из тупика, в который мы попали в предыдущей главе, а именно для разрешения проблемы пространственно-временны?х сингулярностей — сингулярностей классической теории Эйнштейна, которые возникают в момент большого взрыва и в черных дырах, а также при большом коллапсе — если наша вселенная решит в конце концов сколлапсировать сама на себя. Конечно же, эта роль квантовой теории гравитации вполне может показаться далекой [от проблем деятельности мозга]. Я, однако, утверждаю, что тут все же имеется почти неуловимая, но важная логическая связь. Постараемся выяснить, в чем она состоит.

Данный текст является ознакомительным фрагментом.