Детерминизм и жесткий детерминизм
Детерминизм и жесткий детерминизм
До сих пор было мало сказано о вопросе «свободы воли», который обычно считается неотъемлемым при рассмотрении активной составляющей проблемы «ум — тело». Вместо этого, я уделил основное внимание предположению о наличии существенно неалгоритмической составляющей в той роли, которую играет осознанное действие. Обычно тема свободы воли обсуждается в связи с детерминизмом в физике. Вспомним, что в большинстве существующих ПРЕВОСХОДНЫХ теорий типа существует явно выраженный детерминизм: если известно состояние системы в определенный момент времени[221], то оно полностью определяется в любой более поздний (или ранний) момент из уравнений теории. Таким образом, по-видимому, для «свободы воли» не остается места, поскольку будущее поведение системы кажется полностью обусловленным физическими законами. Даже U-часть квантовой механики имеет такой же полностью детерминистский характер. Однако R-часть, связанная с «квантовым скачком», не является детерминистской, внося элемент случайности в эволюцию системы во времени. Был момент, когда исследователи старались найти именно здесь свободу воли, полагая, что действие сознания может непосредственно влиять на «скачок» отдельной квантовой системы. Но если R-часть действительно случайна, то это тоже нам не слишком поможет, если мы хотим конструктивное применение нашей свободе воле.
Моя собственная точка зрения (правда, не очень четко сформулированная в этом случае) заключается в том, что должен быть применен некий новый подход (ПКТГ; см. главу 8), который работал бы на границе между квантовой и классической физикой, интерполируя между U и R (каждая из которых теперь рассматривается как аппроксимация); и этот подход должен содержать существенно неалгоритмический элемент. А это подразумевает, что будушее не будет вычислимым на основе настоящего, даже если оно им и определяется. Я пытался по возможности наиболее ясно определить смысловые различия терминов «вычислимость» и «детерминизм» в главе 5. Мне кажется, что ПКТГ может быть детерминистской, но невычислимой теорией[222]. (Вспомним невычислимую «игрушечную модель», которую я описал в главе 5, «Вычислима ли жизнь в бильярдном мире?».)
Многие при этом считают, что даже классический (или U-квантовый) детерминизм не является детерминизмом в полном смысле этого слова, поскольку исходные условия в принципе не могут быть известны с такой точностью, которая действительно позволила бы просчитать будущее. Иногда совсем небольшие изменения исходных условий могут привести к очень значительным различиям в конечном результате. Именно так возникает «хаос» в (классической) детерминистской системе — явление, приводящее, например, к неопределенностям в прогнозе погоды. Однако очень трудно поверить, что этот вид классической неопределенности может позволить нам сохранять (иллюзорную?) веру в существование свободы воли. Будущее поведение все равно будет детерминированным в каждый момент времени, начиная с Большого взрыва, даже если мы окажемся не в состоянии его вычислить (см. гл.5 «Гамильтонова механика»).
То же самое возражение может быть выдвинуто и против моей идеи о том, что невычислимость связана скорее с особенностями законов динамики — которые в этом случае считаются исходно неалгоритмическими — чем с нехваткой информации о начальных условиях. Невычислимое будущее, согласно этой точке зрения, все равно будет полностью обусловлено прошлым — вплоть до момента Большого взрыва. На самом деле я не настолько привержен догмам, чтобы настаивать на том, что методы ПКТГ должны быть по сути детерминистскими, но невычислимыми. Я полагаю, что искомая теория должна иметь более тонкий характер, вследствие чего подобное грубое описание будет к ней просто неприменимо. Единственное, на чем я настаиваю — так это на необходимости присутствия в ней существенно неалгоритмических элементов.
Завершая этот раздел, я хотел бы упомянуть еще об одном представлении о природе детерминизма, причем из числа весьма радикальных. Я называю его жестким детерминизмом (Пенроуз [19876]). Согласно этой теории, не просто будущее предопределяется прошлым — вся история вселенной оказывается раз и навсегда определенной в соответствии с некоторой точной математической схемой. Такая концепция могла бы привлечь тех, кто склонен каким-нибудь образом отождествлять мир Платона с физическим миром — ибо застывший навеки мир Платона с его однозначной определенностью не оставляет в этом случае вселенной никаких «альтернативных возможностей»! (Я иногда задаю себе вопрос: мог ли Эйнштейн иметь в виду подобную схему, когда он писал: «Что меня собственно интересует, это следующее: мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты» (письмо Эрнсту Штрауссу; см. Кузнецов [1980], с. 363).)
С одним из вариантов жесткого детерминизма мы сталкиваемся в квантово-механической концепции «множественности миров» (см. главу 6, «Различные точки зрения на существующую квантовую теорию»). В соответствии с ней, вышеупомянутая точная математическая схема определяла бы не единственную отдельную историю вселенной, а всю совокупность из мириадов мириадов «возможных» историй вселенной. Несмотря на малопривлекательный характер (по крайней мере для меня) такой схемы и множество проблем и несоответствий, которые она в себе несет, мы все же не имеем права сбрасывать ее со счетов как потенциально возможную.
Мне кажется, что, если принять жесткий детерминизм, но без множественности миров, то математическая схема, которая управляет структурой вселенной, вероятно, должна быть неалгоритмической[223]. Ибо в противном случае можно было бы, в принципе, просчитать свои будущие действия, а затем вдруг «решить» сделать нечто совершенно другое — получаем очевидное противоречие между «свободой воли» и жестким детерминизмом нашей теории. Вводя невычислимость, можно избежать этого противоречия, хотя должен признаться, что я не вполне уверен в адекватности решения такого типа и предвижу в будущем гораздо более тонкое описание «реально действующих» (неалгоритмических) правил, которым подчиняется наш мир!
Данный текст является ознакомительным фрагментом.