12. Концепции постнеклассического естествознания и теорий самоорганизации

We use cookies. Read the Privacy and Cookie Policy

12. Концепции постнеклассического естествознания и теорий самоорганизации

12.1. Возникновение и становление концепций постнеклассического естествознания

Важным аспектом совершенствования методологии познания является всесторонний анализ проблемного поля современной науки. До сегодняшних дней господствующая научная картина мира по существу распадалась на три части (неорганическую, органическую и социальную), в которой процессы самодвижения, самоорганизации имели место, но с точки зрения общего эволюционизма они не были объединены.

Прорыв в понимании того, как инертная материя может приобретать свойства самоорганизации, произошел в последней четверти XX века и, естественно, вызвал взрыв интереса к попыткам построения единой теории самоорганизации материи.

Интерес этот еще более возрос, когда физики и математики ввели в научный оборот и теоретически обосновали кардинальные концепции и понятия теорий самоорганизации материи — диссипативные структуры (Пригожин), синергетику (Хакен), теорию катастроф (Том, Арнольд), теорию автопоэза или теорию Сантьяго (Матурана, Варела) и др. Многие понятия теорий самоорганизации стали переосмысливаться в новой единой пост-неклассической картине мира, в которой магистральная эволюция непротиворечивым образом объединяет и то, как материя движется, и то, как она мыслит.

Абстрактная формулировка идеи всеобщего эволюционизма (от Аристотеля до Пригожина и Моисеева) сменилась на научно оформленную теорию в результате ассимиляции этой идеи физикой (эволюционирующие космогонические модели Вселенной, особо термодинамических процессов), химией (каталитические системы, элементарные каталитические системы А. Руденко), биологией (биогенез, синтетическая теория эволюции, несводимость макроэволюции к микроэволюционным изменениям), социологией (тектология А. Богданова).

Разработка теоретического механизма всеобщего (глобального) эволюционизма осуществлялась после закрепления в естественных науках синергетического подхода (Хакен; Князева; Курдюмов; Моисеев) и идей теории диссипативных структур (Пригожин).

Хотя специфика картины мира допускает многоголосие средств выражения идеи всеобщего развития, но язык диссипативных структур и синергетического (корпоративного) эффекта наиболее адекватно описывает процессы самоорганизации, самосозидания (автопоэза) и самодвижения. Таким образом, в рамках эволюционно-синергетического диссипативно-структурного подходов самоорганизация предстает как одна из форм организации материи. При этом определяются, с одной стороны, равновесные формы организации, отличающиеся от самоорганизации, а с другой — под «крышей» указанных подходов объединяются в особый класс — нелинейно-динамический, практически все физические, химические и биологические структуры, которые ранее принципиально не сводились вместе.

Мир полон мифов линейного, классического мышления. Так, вплоть до настоящего времени многих пугал и продолжает путать хаос, ибо хаос представляется сугубо деструктивным началом мира. Случайность всегда тщательно изгонялась из научных теорий. Она считалась со времен классической эпохи науки второстепенным, побочным, не имеющим принципиального значения фактором. Существовало убеждение, что случайности никак не сказываются, забываются, стираются, не оставляют следа в общем течении событий природы, науки, культуры. А мир, в котором мы живем, рассматривался как не зависящий не только от микрофлуктуаций на нижележащих уровнях бытия, но также и не зависящим от малых влияний космоса.

Картина мира, рисуемая классическим разумом (классической наукой) — это мир жестко причинно-следственных связей, согласно которым результат внешнего управляющего воздействия есть однозначное, линейное, предсказуемое воздействие. Чем больше вкладываешь, например, энергии, тем больше будто бы должна быть и отдача, следствие прямо или линейно пропорционально причине.

Еще один из господствующих по сей день мифов линейного (классического) мышления — это представление о том, что процессы бурного роста (например, возрастания народонаселения земного шара, рост научного знания, «экономическое чудо») происходят по экспоненциальной зависимости, т. е. предполагался весьма и весьма быстрый рост. На самом деле, большинство процессов лавинообразного роста происходят даже не по экспоненте, а в так называемом режиме с обострением, когда рассматриваемые величины, хотя бы часть времени, изменяются по закону неограниченного возрастания за конечное время.

Выдающийся современный мыслитель Илья Пригожин приложил немало усилий к тому, чтобы включить в парадигму современного научного сознания концепции, известные как «самоорганизация», или «возникновение порядка из хаоса». Самоорганизация — это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Система называется самоорганизующейся, если она стремится сохранить свои свойства и природу протекающих процессов за счет структурных изменений.

Класс систем, способных к самоорганизации, — это открытые, нелинейные системы. Открытость системы означает наличие в ней источников и стоков, обмена веществом, информацией и энергией с окружающей средой.

Открытость системы — необходимое, но не достаточное условие для ее самоорганизации: то есть всякая самоорганизующуюся система открыта, но не всякая открытая система самоорганизуется, строит структуры. Все зависит от взаимодействия двух противоположных начал: создающего структуры, наращивающего неоднородности в сплошной среде (работы объемного источника), и рассеивающего (диссипирующего), размывающего неоднородности, т. е. начал самой различной природы. Обсудим некоторые детали и механизмы возникновения сложноорганизованных систем и структур.

12.2. Динамика возникновения диссипативных структур

Как уже отмечалось в п. 3.4, 3.5, главах 4–7, для возникновения структур, составленных из тех или иных элементов, необходимо существование достаточно прочных связей между этими элементами. Для образования таких связей необходима возможность диссипации, рассеяния, передачи в окружающую среду энергии связи. Необходима внешняя «окружающая среда» и в ней должна быть какая-то исходная неоднородность, к которой переходит часть энергии извне. Для примера рассмотрим явления во Вселенной.

Первопричина структурирования нашей Вселенной — в ее исходной неоднородности во времени, проявленной в пространственных масштабах. Вселенная расширяется и остывает, энергия рассеивается, энтропия растет, но это расширение ведет к появления потока рассеяния, непрерывного движения и направленного изменения состояния вещества. Этот поток и привел к образованию макроскопических неоднородностей — структур всех масштабов.

Астрономы наблюдают крупномасштабные пространственные неоднородности во Вселенной, точнее, в Метагалактике: материя сконцентрирована в звездах, звезды — в галактиках, галактики в скоплениях и сверхскоплениях, и только в масштабах, значительно больших, чем размеры сверхскопления (это сотни мегапарсек или сотни миллионов световых лет), Метагалактика пространственно однородна.

Неоднородность, структурированность отдельных частей Метагалактики связана с их конечностью и открытостью: для каждой такой части можно говорить о внешней среде, с которой происходит обмен энергией и энтропией. Микронеоднородности, флуктуации возникают и исчезают непрерывно, случайным образом, из-за принципиально вероятностной природы микропроцессов и процессов в больших стохастических системах. Для превращения же флуктуаций в макронеоднородности и в сложные, развитые структуры необходим направленный поток энергии и вещества, который изначально и задается рассеянием при расширении.

При возникновении и усложнении структуры происходит локальное (местное) возрастание порядка и, соответственно, уменьшение энтропии данной структуры, тогда как в большем масштабе в системе, включающей также и часть внешней среды, энтропия возрастает. Из того, что нам известно к настоящему времени, следует, что все структуры во Вселенной возникли в результате протекания процессов диссипации первоначально концентрированной тепловой энергии. При этом энтропия Вселенной в целом непрерывно возрастала, каждое местное уменьшение энтропии при возникновении упорядоченных структур с избытком компенсировалось ее увеличением за счет рассеяния энергии (следует отметить, что не существует закона сохранения энтропии, а отмечается всего лишь ее непрерывное возрастание).

Практически все наиболее сложные структуры вокруг нас — это структуры диссипативные, они могут существовать только при наличии непрерывного «сквозного» потока энергии или вещества. Простейший, классический пример диссипативной структуры — это уже обсуждавшиеся ячейки Бенара — правильные шестигранные конвективные ячейки, возникающие в плоском слое жидкости, подогреваемой снизу. Внутренняя структура Земли — также диссипативная структура, порожденная конвективным переносом тепла и подвижных легких компонентов вещества из глубины к поверхности (обсуждалось ранее в связи с проблемой начала жизни и возникновения кислорода в атмосфере Земли). Структура земной поверхности — результат как внутриземных диссипативных процессов, так и потока солнечной энергии.

Как же возникают структуры на фоне диссипации? Ведь естественные процессы — это самопроизвольно протекающие процессы, связанные с возрастанием энтропии, а производство энтропии эквивалентно производству беспорядка и связано с разрушением структур?

Противоречия здесь нет. Возникновение диссипативных структур связано с производством избыточной энтропии. При определенных условиях, вдали от равновесия, неравновесная стационарная система становится неустойчивой и естественным образом переходит в новое, более организованное состояние (с меньшей энтропией). Оно обеспечивает, в целом, более эффективное, «избыточное», производство энтропии в претерпевшей изменения системе. Так, например, бенаровская конвекция на несколько порядков более эффективный способ переноса и рассеяния тепла, чем теплопроводность. Такие перестройки происходят на макроскопическом уровне, и механизм их заключается в разрастании некоторых определенных случайно возникающих флуктуаций. Задача описания и объяснения возникновения наблюдаемых структур распадается на две: описание природы и механизма возникновения первичных флуктуаций и описание механизма превращения их в макроскопические структуры.

Наглядными примерами диссипативных структур, кроме ячеек Бенара, вихрей Тейлора в течении Куэйта, являются, например, еще такие природные явления, как циклоны, торнадо (смерчи) в атмосфере, а также некоторые облачные структуры. Все это конвективные структуры, резко увеличивают эффективность диссипации тепловой энергии и, значит, эффективность производства энтропии. Диссипативными структурами в принципе той же природы, хотя и неизмеримо более сложными, являются все живые существа и экологические системы, поддерживающие свое существование путем непрерывного обмена веществом и энергией с внешней средой — выбросом из себя энтропии, поглощением негэнтропии.

Но не только мир полон диссипативных структур, вокруг нас в изобилии находятся и равновесные структуры, существующие вне потока энтропии, например, кристаллы. Для их существования в настоящий момент не нужно поступления и рассеяния энергии и увеличения энтропии, однако для возникновения таких структур все это было необходимо и все это они прошли в прошлом. Кристаллы растут как динамические структуры в условиях диссипации и за их совершенную организацию заплачено увеличением энтропии в окружающей среде.

Вспомним то, что ранее (в главе 3 и в п. 9.7) было написано о роли второго начала термодинамики в эволюции мира. Второе начало утверждает, что в любой изолированной системе самопроизвольно протекают только процессы, ведущие к выравниванию температур и концентраций, рассеиванию и понижению качества энергии. Такие процессы необратимы. В результате должны затухать все процессы и разрушаться все структуры. То, что наш мир структурирован и в нем протекают активные процессы, вступило в противоречие с существовавшей концепцией стационарной Вселенной: существующая вечно Вселенная должна быть «мертвой».

До середины XX века этот парадокс разрешался допущением, что второй закон термодинамики не имеет силы в масштабах всей Вселенной, что существуют не известные нам процессы, не подчиняющиеся этому закону, которые поддерживают стационарность наблюдаемой Вселенной. Сейчас стало ясно, что Вселенная нестационарна, что наша Вселенная имеет начало и конец и противоречия со вторым законом термодинамики нет. Все существующие во Вселенной неоднородности, мезо- и крупномасштабные структуры — результат ее нестационарности, расширения, и связанное с ними локальное понижение энтропии в отдельных частях мира не вступает в противоречие с общим ее возрастанием. Микронеоднородности постоянно возникают случайным образом, превратиться же в сложные макроструктуры они могут лишь при наличии сквозного потока вещества и энергии, обусловленного диссипацией.

Итак, мир живет в условиях диссипации, за все высокоорганизованные структуры он платит увеличением хаоса и снижением качества энергии и когда-то все это, возможно, закончится. Встает вопрос: а как же все это началось? Как сконцентрировался тот огромный запас энергии высокого качества, который сейчас расходуется?

Сейчас наша Вселенная разрастается, тогда как 13–17 млрд лет назад вся она была сосредоточена в ничтожно малом объеме (в сингулярности) и находилась в таком состоянии, которое современная наука описывать не умеет. Вселенную, точнее Метагалактику в целом, мы можем рассматривать только как изолированную систему, которая расходует запас энергии «высокого качества» (эта энергия теряет качество, диссипирует), обеспечивая «жизнь» Вселенной. Если взять любой ограниченный объем во Вселенной, он будет представлять собой неизолированную, открытую, систему, которая взаимодействует с окружающей средой. В открытой системе, которая непрерывно обменивается веществом и энергией с окружающей средой, этот обмен может обеспечить локальное (местное) увеличение порядка и усложнение структур, включающих, в частности, области временной концентрации энергии, диссипация которой создает условия для возникновения структур следующего, более высокого порядка. Такие области часто в первом приближении могут рассматриваться как изолированные.

Пример такой ограниченной в пространстве области, которую можно считать изолированной, пренебрегая в первом приближении любыми взаимодействиями с окружающей средой, являет собой наша Солнечная система. В таком приближении эта система является чисто диссипативной, и только диссипация определяет ее эволюцию, которая поэтому достаточно детально проанализирована астрофизиками.

12.3. Устойчивость структур и механизм их эволюции

Теперь надо понять, как конкретно происходит новое возникновение (изменение) структур. Можно пытаться понять это, имея в виду термодинамическую теорию дис-сипативных структур, но гораздо раньше механизм этот начал осмысливаться как механизм эволюции, как механизм закономерного, направленного изменения естественных объектов и систем.

Представление о нашем мире как о мире непрерывно эволюционирующем, становление и развитие которого продолжается и в настоящее время, было впервые научно обосновано Чарльзом Лайелем (1797–1875) в его знаменитом труде «Основы геологии», вышедшем в свет в 1830–1833 гг. Эта работа произвела научную революцию во взглядах его современников на происхождение всего, что окружает нас. В ней было показано, что природа обладает способностью саморазвития, что для этого не требуется не только усилий Творца, но и вообще каких-то внешних исключительных толчков. На основе анализа фактов Лайель пришел к выводу, что «…все изменения, которые произошли в течение геологической истории, происходили постепенно под влиянием факторов, которые действуют и в настоящее время. Следовательно, для объяснения этих изменений совершенно не нужно прибегать к представлениям грандиозных катастроф — необходимо лишь допустить очень длительный срок существования Земли*.

Эволюционные идеи Лайеля сыграли свою роль и в создании Чарльзом Дарвином его теории происхождения видов, после появления которой учеными стали активно разрабатываться проблемы конкретных механизмов эволюции прежде всего по отношению к органическому миру, а потом к миру в целом. Было замечено, что эволюция жизни идет в сторону усложнения, а сама жизнь есть грандиозное усложнение по сравнению с неживой природой. И именно загадка возникновения жизни, как уже отмечалось ранее, которая противоречит основным законам классической термодинамики, подтолкнула Илью Пригожина на создание им новой неравновесной термодинамики необратимых процессов.

В проблеме эволюции, начиная с Дарвина, основными вопросами были: что является движущей силой эволюции? Как осуществляется переход к новой структуре? Конкретно в отношении биологической эволюции Дарвин предложил в качестве движущей силы случайные изменения и естественный отбор, а в качестве механизма — постепенное накопление признаков, улучшающих конкурентоспособность. Эти положения Дарвина оспаривались многими учеными, оспариваются и сейчас, но не столько в принципе, сколько в конкретных деталях.

Впоследствии дарвиновский эволюционный подход был распространен и на другие природные объекты: географические ландшафты, геологические структуры, планеты, планетные системы, звезды, галактики и, наконец, Вселенную. При этом он был уточнен и скорректирован в соответствии с последними достижениями науки, особенно с достижениями науки в XX веке.

В отношении общей эволюции нашего мира сейчас можно сказать, что движущей силой является расширение Вселенной и диссипация, а ее механизм не такой гладкий, перманентный, как его предполагал Дарвин. Он, прежде всего, включает резкие скачкообразные преобразования структур. Изменение и, в частности, усложнение структур, происходит не путем непрерывного накопления малых изменений, а путем скачков, связанных с резкой глубокой перестройкой. Это последнее положение, очевидно, следует в значительной степени распространить и на биологические структуры, переформулировав (если это вообще возможно по отношению к данной теории) в этом смысле теорию Дарвина.

Действительно, наш эволюционирующий мир дискретен, корпускулярен: вещество собрано в галактики, звезды, планеты; звезды закономерно эволюционируют, проходя несколько дискретных, четко различимых стадий; на Земле мы видим четко различающиеся типы геоструктур, такие как материки и океаны, горы и равнины; в биологии — множество (миллионы) отчетливо различающихся видов. Если бы эволюция осуществлялась путем постепенных переходов, из одного состояния в другое, то такой дискретной картины видов мы бы не наблюдали. Все границы мира были бы смазаны, всегда в нем присутствовали бы многочисленные промежуточные формы, но за последние 150 лет они так никем и не обнаружены!

Мы видим дискретность и в вещественной — пространственной — структуре Вселенной и каждой ее части, а в протекании любых эволюционных процессов, меняющих эту структуру — дискретность во времени. Одно (пространство) неразрывно, как впервые показал это Минковский, связано с другим (временем). Четырехмерное многообразие мира Эйнштейна-Минковского требует, чтобы наблюдаемая дискретная пространственная структура создавалась дискретными во времени процессами.

Как осуществляются скачкообразные переходы одной структуры в другую? Каждая диссипативная структура представляет собой динамическую систему, которая сохраняет свою идентичность, стабильность, благодаря непрерывному обмену с окружающей средой и такому характерному свойству, как устойчивость. Устойчивость свойственна как статическим, равновесным структурам, так и динамическим. Смысл понятия устойчивости в нечувствительности структуры к изменению внешних условий (в определенных конечных пределах) и в возможности для данной структуры воспроизводиться при воспроизведении тех же условий.

Все эти условия устойчивости в точности могут быть выполнены только в идеале, в реальности же всегда что-то меняется и никогда не возможно, повторяя опыт, точно воспроизвести все условия. Поэтому практически устойчивость означает отсутствие существенных отклонений, сохранение основных, важных для структуры характеристик при приблизительном воспроизведении условий.

Если бы структуры не обладали устойчивостью, нельзя было бы говорить о них как о структурах вообще, они рассыпались бы под действием постоянно имеющих место флуктуаций — случайных колебаний внешних условий и параметров внутреннего состояния системы. Устойчивость структуры связана с ее реакцией как системы, на демпфирование (от нем. Dampfen — глушить), гашение флуктуаций: в устойчивой системе, вслед за флуктуацией, возникают процессы, приводящие к изменениям, противоположным флуктуации, гасящим ее. Например, случайное изменение плотности газа в небольшом объеме приводит к возникновению градиента концентрации молекул на его границе, и диффузия немедленно начинает сглаживать это изменение плотности.

В более сложных системах более сложны и многообразны и процессы, обеспечивающие устойчивость. Сопротивление судна переворачиванию обусловлено формой его корпуса и закономерностью распределения груза, благодаря чему при крене возникает возвращающий в вертикальное положение момент. Поднятие гор активизирует процессы их разрушения, а прогибание впадин — процессы их заполнения осадками. Поэтому Земля устойчиво сохраняет очень близкую к идеально шарообразной форму. Особенно сложен комплекс процессов, способствующих стабильности внутренней среды живого организма при очень сильно меняющихся внешних условиях. Например, температура тела теплокровного животного сохраняется с точностью до 0,1 градуса при изменении температуры внешней среды на величину во много десятков градусов.

12.4. Механизмы потери устойчивости структур, катастрофы, бифуркации, математическая теория катастроф и прогнозы будущего

Среди новых математических теорий, исследующих сложные системы, а значит, их самоорганизацию и эволюцию, особое место отводится так называемой теории катастроф, возникшей в конце 60-х годов XX столетия благодаря французскому математику Рене Тому, развитой затем в работах русского математика Владимира Арнольда. Бум, который возник в обществе в связи с новой теорией, был таков, что стали писать о перевороте в математике, о том, что новая наука гораздо ценнее, чем классический математический анализ, что теория катастроф дает универсальный рецепт для исследований любого рода. Мода на новую возникшую науку была столь велика, что появились сотни научных и околонаучных публикаций, в которых теория катастроф применялась к эмбриологии и психологии, кардиологии и лингвистике, социологии и геологии, к проблемам психических расстройств и поведению биржевых игроков, теории влиянии алкоголя на водителей и т. д. и т. п. Владимир Арнольд считает, что это случилось благодаря хорошо подобранному термину, как в свое время успех пришел к кибернетике (детище американского математика Норберта Винера), и к синергетике (детище Германа Хакена). «Трудно поверить, — говорил Анри Пуанкаре, — какую огромную экономию мысли может осуществить одно хорошо подобранное слово». И вот термин «теория катастроф» Рене Том придумал для обозначения качественного изменения объекта при плавном изменении параметров, от которых этот объект зависит.

Рассмотрим с позиций теории катастроф ситуацию, связанную с механизмом потери устойчивости какой-либо структурой. Нам известно, исследуемый нами мир структурирован, значит, все его структурные элементы обладают устойчивостью, и в то же время он меняется, эволюционирует. Отсюда следует, что время от времени имеет место и качественная, существенная перестройка структуры или состояния системы. В этом случае принято говорить о потере устойчивости. При потере устойчивости определенные флуктуации перестают компенсироваться и катастрофически растут до тех пор, пока качественное, существенное изменение системы не положит этому росту конец. Переход системы в новое состояние происходит скачком, который подготавливается изменениями параметров, обычно называемых управляющими. Момент скачка определяется некоторым критическим значением параметра, приближение к которому может быть медленным и плавным. Последнеее ничтожное, в пределе бесконечно малое, изменение какого-то параметра приводит к полной, кардинальной перестройке. Так возникают снежные лавины, камнепады, сели и другие природные явления.

При нагреве герметически закрытого сосуда, до половины наполненного водой, прежде разделенные в нем две фазы — вода и пар — резкой границей, по достижении некоторой критической температуры границу эту мгновенно утрачивают — система перейдет в качественно новое — надкритическое состояние, в котором нет ни пара ни воды как таковых. Точно так же мгновенно по достижении критической величины потока тепла возникает четко структурированная конвекция (бинаровская). При критическом крене судно мгновенно переворачивается вверх дном. По достижении критической массы урана происходит ядерный взрыв. При изменении внешних условий дальше какого-то предела живое существо умирает.

Такие скачкообразные перестройки принято называть «катастрофами», и математическая теория, созданная для их описания, имеет это же название — теория катастроф. Подчеркнем сразу, во избежание путаницы, что эти «катастрофы» не имеют ничего общего с катастрофами, считавшимися причиной изменений (эволюции) в природной среде до появления труда Ч. Лайеля. Те катастрофы были катастрофами и в обычном смысле, вызванными внешними, никак не связанными с внутренними характеристиками рассматриваемой системы, обстоятельствами. «Катастрофы», о которых речь пойдет ниже, описывают не причины изменений в природных системах, а механизм этих изменений и являются следствием их внутренних характеристик.

Механизм и условия появления таких скачков, качественные результаты теории покажем, рассмотрев классический пример — прощелкивание изогнутой пластины (полоски, «линейки»).

Упругая пластина, выгнутая вверх, имеет вид арки. Если ее нагружать посередине, это будет первый ее управляющий параметр, она начнет деформироваться, но будет оставаться аркой, выгнутой вверх, хотя и немного кривой, до тех пор пока нагрузка не достигнет критической величины, при которой пластина «прощелкнет» и займет свое второе устойчивое положение — прогибом вниз. Вторым управляющим параметром в такой конструкции может быть боковое сжатие, обеспечивающее исходную выгнутость вверх: чем больше оно, тем больше критическая нагрузка и сильнее прощелкивание.

Если такую пластинку поставить вертикально и подвергать ее вертикальному сжатию и боковой нагрузке в центре, справа или слева, мы получим систему с двумя полностью симметричными устойчивыми состояниями — выгнутость вправо и выгнутость влево. Действие боковой нагрузки симметрию нарушает, но если нагрузка только вертикальная, оба состояния совершенно равноправны. Между ними находится состояние строгой вертикальности, неустойчивое при наличии сжимающей вертикальной нагрузки, оно разрушается при любой сколь угодно малой флуктуации.

Здесь хорошо видна важная особенность поведения динамических систем в момент неустойчивости — неоднозначность дальнейшего поведения. При возникновении только вертикальной сжимающей силы линейка может выгнуться в любую сторону, причем вариант, выбранный ею, зависит от случайных сколь угодно малых флуктуаций внешних условий или внутренних параметров. После того, как путь дальнейшей эволюции выбран (изгибание началось в определеную сторону), система уже не может свернуть с него, но сам выбор пути — случаен! Точка неустойчивости в этом случае называется точкой бифуркации, точкой ветвления или раздвоения. В поведение системы в точке бифуркации вносится принципиальный элемент случайности.

Это очень важный, фундаментальный для всего естествознания момент. Оказывается, мы имеем дело с принципиальной неопределенностью не только в микромире, в мире квантов, но и в мире макроскопических, непосредственно наблюдаемых нами явлений.

Рассмотрим еще раз вертикальную упругую пластинку (линейку), изображенную на рис. 1. Ее состояние описывается количественно величиной стрелы прогиба X. Изменение этой величины определяют два управляющих параметра: сила Fy, действующая вдоль нее (вдоль оси у), которую будем считать положительной, когда она растягивающая, и отрицательной, когда она сжимающая, и сила Fx, действующая на ее середину в перпендикулярном направлении (вдоль оси х).

Рис. 1. Простейшая система с «катастрофой» — упругая линейка под действием продольной и поперечной сил. Нижний конец линейки закреплен шарнирно в начале координат, верхний не закреплен, но может двигаться только вдоль вертикальной оси. а) если Fy =0, стрела прогиба X прямо и однозначно зависит от величины силы Fx; б) если Fy < 0, одному и тому же значению Fx соответствуют два устойчивых положения линейки — с прогибами X1 и X2 переход между которыми возможен только скачком.

Сила Fx положительна, если направление ее действия совпадает с направлением оси х. Если сила Fx отсутствует, а сила F положительна — линейка прямая и при этом система находится в устойчивом состоянии (если появится сила Fx, отличная от нуля линейка прогнется, как показано на рис. 1а, но если эта сила исчезнет — исходное состояние восстановится); если сила F отрицательна, состояние «линейка прямая» становится неустойчивым: любое случайное сколь угодно малое воздействие скачком переведет ее в одно из возможных симметричных состояний — «линейка выгнута вправо» или «линейка выгнута влево».

Какое из этих состояний реализуется при отсутствии боковой силы, предсказать невозможно: при переходе силы F от положительных значений к отрицательным, система проходит точку бифуркации. Параметр, воздействующий на систему подобным образом, называется расщепляющим, так как его изменение приводит в точке бифуркации к расщеплению единой кривой, описывающей поведение системы, на две равнозначных. Выбор между этими двумя линиями поведения может определяться случаем.

Если сила F отрицательна и линейка выгнута влево, положительная сила Fx будет деформировать линейку, незначительно уменьшая стрелу прогиба в середине линейки X, пока не произойдет прощелкивание вправо (рис. 16). Для такого прощелкивания потребуется тем большая сила Fx, чем больше отрицательная (сжимающая) величина силы F.

На рис. 2 зависимость X (Fx, Fy) показана на трехмерном графике. Она представляет собой изогнутую поверхность с особенностью типа «сборка». Это действительно сборка — хорошо знакомая нам деталь покроя одежды. Она состоит из двух складок, сходящихся вместе в одной точке — точке сборки. Складки и сборка — это стандартные особенности многообразия катастрофы — поверхности равновесия, отражающей зависимость исследуемой характеристики системы от управляющих параметров. Каждая точка такой поверхности описывает некоторое состояние системы и называется изображающей точкой. Проекция сборки на плоскость управляющих параметров имеет вид угла с острием и называется отображением катастрофы. Каждой точке внутри этого угла соответствуют три значения X, вне угла — одно.

Рис. 2. Зависимость X от управляющих параметров Fx и Fy, изображенная на трехмерном графике: поверхность равновесия с особенностью типа «сборка». Отображение катастрофы на плоскости управляющих параметров имеет вид угла с острием, каждой точке а внутри которого отвечают три точки на поверхности равновесия — b, с и d. В области катастрофы при изменении управляющих параметров конечное состояние системы зависит не только от конечных значений этих параметров, но и от пути, по которому эти значения были достигнуты — переход в точку а из точки о на плоскости управляющих параметров может перевести соответствующую точку на поверхности равновесия в точку а, если он осуществляется по прямой через ближайшую сторону угла, и в точку d, если путь перехода идет в обход точки сборки.

На трехмерном графике рис. 2 лучше видно влияние каждого из двух управляющих параметров. При изменении расщепляющего параметра Fy, проекция изображающей точки на плоскость управляющих параметров движется вдоль оси угла, образуемого проекцией сборки и, если нормальный параметр Fx равен 0, проходит через острие угла. При этом лишь от случая зависит, по верхнему или по нижнему листу сборки будет двигаться дальше сама изображающая точка на многообразии катастрофы.

Если Fx больше или меньше нуля, проекция изображающей точки пройдет справа или слева от острия (или от точки сборки), и, соответственно, сама изображающая точка однозначно и вполне детерминированно пойдет по верхнему или по нижнему листу.

Изменение Fx проводит проекцию изображающей точки на плоскости управляющих параметров поперек проекции сборки и при Fy < 0 траектория изображающей точки пересекает ее границы. На самой сборке это приводит к скачку точки, описывающей состояние системы, с одного листа поверхности X на другой (на рис. 2 показана траектория изображающей точки со скачком с нижнего листа на верхний). При этом в нашем случае реализуется так называемый принцип максимального промедления — скачок, как прямой, так и обратный, происходит у дальней границы угла, зависимость образует петлю гистерезиса.

Движение изображающей точки по поверхности равновесия помогает проследить, как будет эволюционировать система при одновременном изменении обоих параметров. При этом конечное состояние системы определяется не только достигнутыми в конце пути значениями этих параметров, но и самим путем, по которому эти значения были достигнуты — траекторией изображающей точки на отображении катастрофы. На рис. 2 видно, что перемещение изображающей точки на плоскости управляющих параметров из точки «о» в точку «а», кратчайшим путем переведет на поверхности равновесия соответствующую точку в точку «b» на нижнем листе, а перемещение в ту же точку «а» вокруг острия угла — в точку «d» на верхнем листе.

Примечательно, что только что полученная нами в простом примере картина катастрофы сборки описывает огромное число реально наблюдаемых процессов возникновения и преобразования структур, перехода динамических систем из одного устойчивого состояния в другое. Это и различные случаи механической устойчивости и фазовые переходы, динамика звездной эволюции и популяций живых существ, экономические кризисы и революции. Хотя и не всегда все так просто, как в рассмотренном примере, но любой сложный случай скачкообразных изменений структуры можно свести к комбинации катастроф складки и сборки. Основные черты динамического поведения самых разнообразных систем оказываются едиными и описываются простой качественной закономерностью — еще один замечательный пример единства и простоты мира.

Складки и сборки — это структурно устойчивые особенности, то есть особенности не исчезающие при малых изменениях параметров. Английским математиком Уитни было доказано, что любая более сложная особенность при малом «шевелении» распадается на складки и сборки.

Практически проанализировать поведение конкретной динамической системы с помощью теории катастроф отнюдь не всегда просто. Главная проблема — определить и количественно охарактеризовать основные управляющие параметры. Это достаточно легко сделать для механических систем, несколько сложнее для химических, термодинамических, и часто чрезвычайно сложно для биологических и, особенно, для социальных систем.

Усложним ситуацию и допустим, что у нас таких вертикальных пластинок много (стоит тысяча металлических линеечек между двумя стальными плитами), и мы их начинаем нагружать одновременно и строго вертикально. Боковой нагрузки нет, и направление изгиба пластинки должно определяться случайной флуктуацией. Оказывается даже в этом случае направления изгиба пластинок не будут совсем беспорядочными. Флуктуации (это могут быть, например, флуктуации плотности воздуха вблизи пластинки) случайны и по величине и по направлению воздействия и по времени. Первая флуктуация вызовет прощелкивание первой пластинки, это прощелкивание вызовет локальную деформацию стальной плиты и движение воздуха, которое воздействует на соседние пластинки и поможет им прогнуться в ту же сторону. Эта однородная деформация будет распространяться как волна, передаваясь от пластинки к пластинке, пока не встретится с другой такой же «волной», порожденной другой флуктуацией в другом месте. В итоге возникнут довольно обширные области одинаково изогнутых линеек, а если их вообще не слишком много, то весьма велика вероятность, что все они изогнутся одинаково — возникнет порядок в результате чисто случайного события изгиба первой линейки. Если же система испытает определенное, пусть даже предельно слабое, заданное внешнее воздействие, то и оно может полностью определить результат — возникнет большая хорошо упорядоченная структура.

Только что описанный пример по существу представляет собой механическую модель намагничивания ферромагнетика, остывающего ниже точки Кюри. Возникающая при этом спонтанная намагниченность (фиксирование определенной ориентации «элементарных магнитиков» — атомов) образует ориентированные случайным образом довольно крупные однородные области — домены, а при наличии достаточно сильного внешнего магнитного поля, вся намагниченность ориентируется по полю.

Благодаря такому эффекту в горных породах фиксируется направление магнитного поля Земли, которое было в определенные моменты их становления. Так, в магматических породах, содержащих магнитные минералы, фиксируется момент их остывания ниже температуры Кюри, когда начинает проявляться ферромагнетизм. При разрушении породы естественными процессами, мельчайшие частички оказываются намагниченными. Они переносятся реками и, в конце концов, осаждаются на дно океанов, морей и озер. В процессе медленного оседания в спокойной воде магнитные частички ориентируются по магнитному полю Земли. Таким образом, в последовательно накапливающихся слоях осадков, так же как и в последовательных порциях изливающихся и застывающих вулканических лав, как на магнитной ленте записывается история изменения взаимной ориентации земного магнитного поля и данного участка земной поверхности. Анализ таких записей по всей Земле позволил обнаружить как изменения магнитного поля, включающие его «переворачивания», когда северный полюс становится южным и наоборот, так и перемещения и развороты крупных участков поверхности Земли.

Скачкообразной перестройкой структуры (катастрофой) являются все фазовые переходы, например, переход жидкость-пар или жидкость-твердое вещество, которые демонстрируют еще одну особенность катастрофы сборки. Резкий переход, описываемый классической сборкой с петлей гистерезиса, возможен и тут, когда перегретая жидкость взрывообразно испаряется (переохлажденная — мгновенно кристаллизуется), но обычно наблюдается постепенное испарение жидкости при сохранении постоянной температуры и давления до тех пор, пока не будет полностью завершен переход в новое состояние. В первом случае реализуется уже упоминавшийся принцип максимального промедления, а в последнем — так называемый принцип Максвелла, который имеет место при высоком уровне «шума» (случайных внешних воздействий, порождающих флуктуации), не позволяющего осуществиться принципу максимального промедления.

Подытоживая материал данного параграфа, отметим, что математическая теория катастроф сама по себе не создает и не предотвращает катастрофы, подобно тому, как таблица умножения, при всей ее полезности для бухгалтерского учета, не спасает ни от отдельных хищений, ни от неразумной организации экономики в целом. Но, и это самое главное ее парадигмальное значение, теория дает прогноз будущих изменений в системе. Трудность решения большинства современных проблем связана, как уже отмечалось, с их имманентной (внутренне присущей) принципиальной нелинейностью. Привычные методы получения и принятия решений, а также управления (учета управляющих параметров, как отмечалось и анализировалось выше), при которых результаты пропорциональны усилиям, тут не действуют и нужно вырабатывать нелинейную интуицию, основанную порой на парадоксальных выводах нелинейной теории.

Вот, например, какие выводы следуют из теории катастроф применительно к системе, находящейся в устойчивом состоянии, признанном плохим (как, скажем, российская экономика на современном этапе, в начале XXI век), поскольку в пределах видимости имеется лучшее состояние (хотелось бы надеяться на это):

1. Постепенное движение в сторону лучшего состояния сразу же приводит к ухудшению. Скорость ухудшения при равномерном движении к лучшему состоянию увеличивается.

2. По мере движения от худшего состояния к лучшему состоянию сопротивление системы растет.

3. Максимум сопротивления достигается раньше, чем самое плохое состояние, через которое нужно пройти для достижения лучшего. После прохождения максимума сопротивления состояние продолжает ухудшаться.

4. По мере приближения к самому плохому состоянию сопротивление, начиная с некоторого момента, начинает уменьшаться и, как только самое плохое состояние пройдено, не только полностью исчезает сопротивление, но система начинает «притягиваться» к лучшему состоянию.

5. Слабо развитая система может перейти в лучшее состояние почти без предварительного ухудшения, в то время как развитая система, в силу своей устойчивости, на такое непрерывное улучшение неспособна.

6. Если, однако, систему удается сразу, скачком, а не непрерывно, перевести из плохого устойчивого состояния в состояние, достаточно близкое к лучшему, то дальше она сама собой будет эволюционировать в сторону лучшего состояния.

С этими объективными законами функционирования нелинейных систем нельзя не считаться. Теория катастроф дает возможность получить и количественные модели. Но в некоторых случаях качественные выводы теории катастроф представляются более важными и даже более надежными, поскольку они мало зависят от деталей.

12.5. Природные диссипативные структуры (стихии)

Очень эффектные диссипативные структуры постоянно возникают у всех на глазах и часто являются «катастрофами» не только по механизму своего образования, который описывается теорией катастроф, но и в обычном смысле по своему воздействию на жизнь человека. Это, прежде всего, различные атмосферные явления, а также извержения вулканов и землетрясения.

Облака — наверное, самые разнообразные и красивые образования, имеющие отчетливую и наглядную диссипативную структуру (а, кроме того, они еще и фрактальные по своей геометрической природе, о чем будет сказано в следующем параграфе). Это динамические образования, существующие лишь при условии непрерывного переноса влаги потоками воздуха. Облака очень упорядоченные структуры, и существует не так много стандартных типов облачности, связанных с совершенно определенными динамическими процессами в атмосфере (хотя мелкие детали формы облаков очень разнообразны и поэтому до сих пор не удалось автоматизировать наблюдения за облаками).

Тропический циклон (от греч. kyklon — кружащийся), он же тайфун (китайское название), он же ураган (классификация по шкале Бофорта) — это сложнейшая вихревая структура, обеспечивающая скачкообразное усиление рассеяния энергии, накопленной в нагретой воде некоторого участка океана. Нагреваемая Солнцем вода океана длительное время спокойно отдает свое тепло и влагу атмосфере, там возникают конвекционные потоки, появляются облака, выпадают дожди, часть тепла в виде длинноволнового излучения уходит в космос. В открытое пространство. Но вдруг, по достижении потоком тепла, отдаваемого океаном, определенной интенсивности на участке поверхности достаточно большой площади, характер теплоотдачи резко меняется — возникает тропический циклон. Огромная скорость ветра и волнение моря приводят к увеличению теплоотдачи с его поверхности в десятки раз. Основное количество тепла отнимается у воды путем испарения. Когда влага конденсируется в облаках, она отдает скрытую теплоту парообразования атмосфере — это очень эффективный механизм теплопередачи. Часть тепла преобразуется в энергию ветра, который усиливает теплоотдачу. Раз начавшись, благодаря такой положительной обратной связи, циклон очень быстро набирает максимальную интенсивность — происходит скачок системы в новое состояние с определенным образом упорядоченной вихревой структурой. А по существу, это такая же перестройка, усложнение структуры, способствующее усилению диссипации, как возникновение правильных конвективных ячеек в подогреваемой снизу жидкости (бинаровская конвекция).

Циклон (тайфун, ураган) — структура устойчивая: раз возникнув, он сохраняется и при довольно значительном изменении условий, перемещаясь по поверхности океана на большие расстояния туда, где он никогда бы не мог возникнуть, и даже выходит на сушу. Здесь работает принцип максимального промедления.

Явление Эль-Ниньо — перегрев больших масс воды в восточной экваториальной зоне Тихого океана, ослабление пассатов, оттеснение к югу холодного Перуанского течения — это опять перестройка структуры атмосферной циркуляции, только еще большего масштаба, чем восточноазиатский тихоокеанский тайфун.