§ 5. СТАТИСТИЧЕСКИЕ ОБОБЩЕНИЯ

We use cookies. Read the Privacy and Cookie Policy

§ 5. СТАТИСТИЧЕСКИЕ ОБОБЩЕНИЯ

Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие.

Учитывая трудности выявления причинных зависимостей, анализ таких массовых событий позволяет установить устойчивое распределение интересующих исследователя случайных признаков. Количественная информация, выражающая устойчивые тенденции развития, имеет важное практическое значение для правильной организации обслуживания населения, профилактических мероприятий, борьбы с преступностью и т. п. Анализ массовых событий ведется чаще всего путем не сплошного, а выборочного исследования отдельных групп или образцов и логического переноса полученных результатов на все их множество. Вывод в этом случае протекает в форме статистического обобщения.

Статистическое обобщение — это умозаключение неполной индукции, в котором установленная в посылках количественная информация о частоте определенного признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода.

В отличие от индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения фиксируется следующая информация: (1) общее число составляющих исследуемую группу, или образец случаев; (2) число случаев в которых присутствует интересующий исследователя признак; (3) частота проявления интересующего признака.

Для построения схемы статистического обобщения введем условные обозначения: S — исследуемый образец; р — интересующий исследователя признак; m — общее число наблюдаемых случаев (элементов образца); n — число благоприятных случаев, когда явление обладает признаком р; f(р) — частота признака р; К — популяция, или множество явлений, на которое распространяется частота признака.

Частота появления признака р в образце S представляет собой отношение числа благоприятных случаев n к общему числу исследованных явлений m:

f(p) = n/m.

Например, статистическая информация о совершении такого рода преступлений, как хулиганство, показывает, что 95 из 100 случаев хулиганских действий совершаются в состоянии алкогольного опьянения. Значит, частота хулиганства, связанная с алкогольным опьянением, определяется как 95/100, т. е. равна 95%.

Частота появления признака в статистических описаниях принимает числовое значение в интервале между 0 и 1: 0 < f(p) < 1. Это объясняется тем, что в статистическом образце S число случаев появления признака (n) всегда меньше общего числа наблюдаемых элементов (m). Поскольку m > n, тем самым f(p) всегда будет меньше единицы, но больше нуля.

В том случае, когда f(p) = 0, это значит, что среди наблюдаемых не обнаружено ни одного явления, обладающего этим признаком. На этой основе может быть построено обычное индуктивное обобщение с отрицательным заключением: поскольку ни одно S не обладает свойством р, значит, можно заключить, что весь класс К не обладает этим свойством. Точно так же и в случае f(p) = 1 можно построить обычную индуктивную генерализацию с утвердительным заключением. Поскольку число случаев появления признака (n) равно числу всех исследованных (m), т. е. n = m, значит, каждое S обладает р. Отсюда заключают, что весь класс К обладает этим признаком.

Схема статистического обобщения:

S имеет f(p).

S ?К.

________

Вероятно, К имеет f(p).

Это означает: признак р появляется в образце S с частотой f; образец S является подмножеством популяции К, которая по числу элементов больше S; отсюда следует, что признак р будет встречаться в популяции К с частотой f.

Статистическое обобщение, являясь выводом неполной индукции, относится к недемонстративным умозаключениям. Логический переход от посылок к заключению дает лишь проблематичное знание. Степень обоснованности статистического обобщения зависит от специфики исследованного образца: его величины по отношению к популяции и представительности (репрезентативности). Если образец по объему приближается к популяции, тем основательнее обобщение, поскольку возможность ошибки становится минимальной. Репрезентативность образца означает меру его представительности: насколько разнообразие элементов в образце отражает их разнообразие в популяции.

Тщательность статистического описания исследуемого образца и логически корректный перенос частоты признака на популяцию обеспечивают высокую вероятность и тем самым практическую эффективность статистических обобщений в различных областях науки, культуры, производства, правовой деятельности.

Вопросы для самопроверки

1. Что такое статистические обобщения?

2. Какова структура статистических обобщений и чем они отличаются от перечислительной индукции?

Данный текст является ознакомительным фрагментом.