§ 3. Интерпретация вероятности
§ 3. Интерпретация вероятности
Проведенное краткое рассмотрение исчисления вероятности не исчерпывает все интересные теоремы, содержащиеся в данной теме. Однако нам следует вернуться к обсуждению логики вероятностного вывода. Повторим еще раз сформулированное нами предупреждение. Математическая теория вероятности исследует необходимые следствия наших предположений о множестве альтернативных возможностей и не может сообщить нам вероятность какого-либо конкретного события. Возникают естественные вопросы: как в таком случае устанавливается вероятность конкретных событий, при каких обстоятельствах используются теоремы исчисления вероятности?
Вероятность как мера верования
Анализ вероятностного вывода, проведенный нами в начале данной главы, не представляет обычной интерпретации этой проблематики. Вероятность того или иного события, как правило, отождествлялась с силой верования в то, что событие произойдет. Согласно де Моргану, вероятность означает «психическое состояние относительно некоторого утверждения, приближающегося события или любого другого обстоятельства, в отношении которого невозможно абсолютное знание». Выражение «это скорее является вероятным, чем невероятным», согласно его позиции, означает «я верю в то, что это случится, больше, чем я верю в то, что этого не случится» [49] . Всезнающее существо никогда не прибегнет к вероятностному выводу, поскольку оно будет достоверно знать истинность или ложность любого суждения. Те же существа, которые не обладают всезнанием, вынуждены опираться на вероятностный вывод, поскольку их знание является неполным и вероятность является мерой их неполного знания. Когда мы в целом уверены, что событие произойдет, то его вероятность равна 1; когда наша вера в его невозможность является подавляющей, то вероятность такого события равна 0; когда же наша вера находится между уверенностью в том, что событие произойдет, и уверенностью в том, что оно не произойдет, то вероятность выражается некоторой дробью, величина которой меньше 1 и больше 0.
При такой интерпретации вероятности исчисление вероятности может использоваться только в случаях, когда наше незнание распределено между несколькими альтернативами. Как мы убедились, математическая теория может ответить на вопрос «какова вероятность того, что при трех бросках монеты орел выпадет 3 раза», только когда имеется информация относительно 1) количества альтернативных способов, которыми может упасть монета, 2) равновероятности всех перечисленных альтернатив и 3) независимости различных бросков. При психологической интерпретации вероятности как меры верования или ожиданий подобную информацию получить вовсе не сложно, поскольку подобная теория опирается на известный критерий, который называется принципом недостаточного основания, или принципом безразличия. Согласно данному принципу, если не существует известных причин для приписывания предмету одной, а не другой из нескольких имеющихся альтернатив, то в отношении подобного знания утверждения о принадлежности этих альтернатив предмету обладают одинаковой вероятностью. А если нет известной причины для того, чтобы верить, что два события являются скорее независимыми, чем зависимыми, то вероятность того, что они независимы, является такой же, как и вероятность того, что они зависимы. Две альтернативы одинаково вероятны, если имеется «одинаковая нерешительность или верование относительно каждой из них». Когда мы вообще не обладаем никаким знанием о двух альтернативах, то вероятность того, что произойдет одно из них, должна согласно данному подходу рассматриваться как равная ?. Если же мы смотрим на незнакомую монету и не имеем никаких причин считать, что одна сторона выпадет скорее, чем другая, то мы должны считать, что вероятность выпадения каждой из сторон одна и та же.
Данная интерпретация не имеет никакого отношения к основаниям теории вероятности. Во-первых, наша способность успешно предсказывать и контролировать поток происходящих изменений посредством вероятностного вывода (например, в области термодинамики и статистической механики) в таком случае становится необъяснимой, если подобные выводы основываются исключительно на нашем незнании или силе нашего верования. Ни одна страховая компания не просуществовала бы долго, если бы в ней решения принимались на основании приблизительной оценки верований и ожиданий ее сотрудников.
Во-вторых, если вероятность является мерой верования, то чье верование мы в таком случае измеряем? Стоит ли говорить о том, что верования относительно одних и тех же событий у разных людей могут быть совершенно разными? Все мы обладаем живым темпераментом, так что наши верования в определенное время и в отношении определенных вещей проходят через всю палитру состояний: от отчаяния до уверенности. Какое же состояние следует выбрать в качестве меры вероятности?
В-третьих, поскольку коэффициенты вероятности можно складывать и умножать, то и верования в таком случае должны были бы стать комбинируемыми соответствующим образом. Но на самом деле нельзя найти такой операции, как сложение верований, верования не могут быть измерены, что станет еще более понятным, когда мы рассмотрим принципы измерения.
Наконец, можно показать, что психологическая теория вероятности приводит к абсурдным результатам, если существенно не ограничить область ее применения. Предположим, что мы знаем, что объем единицы массы некоторого вещества находится между 2 и 4. При такой интерпретации вероятности можно сказать с одинаковой долей вероятности, что удельный объем располагается как между 2 и 3, так и между 3 и 4. Однако удельная плотность обратно пропорциональна удельному объему, так что если объем – это v , то плотность – это 1/ v . Следовательно, плотность данного вещества должна находиться где?то между ? и ? (т. е. между 4/8 и 2/8, и, следовательно, также вероятно, что она будет находиться где?то между 3/8 и ?. Это, однако, равносильно утверждению о том, что удельный объем должен лежать между 2 и 8/3 с той же вероятностью, что и между 8/3 и 4. Это противоречит нашему исходному результату.
Вероятность как относительная частота
Сложности подобного рода привели к интерпретации вероятности как относительной частоты, с которой конкретное событие будет происходить в общем классе событий. Так, когда мы говорим, что вероятность того, что данная монета упадет орлом, равна ?, мы хотим сказать, что, по мере того как количество бросков этой монеты будет увеличиваться, соотношение между количеством выпавших орлов и общим количеством бросков будет около (т. е. не будет материально отличаться от) ?. Подобное утверждение, разумеется, является предположением, или гипотезой, относительно действительного положения дел в природе и поэтому требует подтверждающих его фактических оснований. Подобные основания могут быть рациональными (в смысле дедукции на основе имеющегося ранее знания) или статистическими. Мы можем знать, что одноцентовые монеты симметричны, и, опираясь на наше знание механики, мы можем заключить, что силы, заставляющие монету падать орлом вверх, уравновешиваются силами, заставляющими монету падать решкой. Или же мы можем опираться на чисто эмпирическое наблюдение как на основание для заключения о том, что в конечном счете количество падений монеты орлом вверх не превысит количество ее падений вверх решкой. В физических науках, таких как метеорология или генетика, а также и в практических делах, таких как страхование, мы полагаемся на оба вида фактических оснований. Однако статистические основания не только нельзя отбросить, но они к тому же и больше на виду. При этом нам не следует полностью отождествлять значение гипотезы и имеющийся объем статистических данных, подтверждающих ее в определенный момент времени. В гипотезе, объясняющей природу определенных вещей, утверждается нечто относительно всех возможных феноменов или членов данного класса. Поэтому она никогда не может быть доказана никаким количеством конечных наблюдений. Однако если у нас будет несколько гипотез, предпочтительна та, которая лучше других согласуется с наблюдаемыми и статистически сформулированными истинами.
При таком подходе мы можем лучше уяснить функцию математической теории вероятности. Предположим, мы начинаем с гипотезы, согласно которой вероятность рождения мальчика равна ?. Исчисление вероятности можно в таком случае использовать, с тем чтобы выводить и предсказывать частоту, с которой будут появляться семьи с двумя детьми мужского пола или семьи с двумя детьми противоположных полов. Может случиться так, что в какой-нибудь отдельно взятой общине все дети, рожденные в течение года, оказались девочками. Будет этот факт опровержением того, что вероятность рождения мальчиков равна ?? Совсем нет! Наше исчисление показывает, что при наших допущениях подобное событие крайне маловероятно, но при этом не невозможно. При этом исчисление может также показать, что такое «исключительное» событие находится в еще большем согласии с каким-то еще допущением (или является менее маловероятным, чем такое допущение). Большое количество повторений исключительных событий может, таким образом, увеличить вероятность истинности какой-нибудь иной гипотезы и уменьшить вероятность истинности той, что принята на текущий момент. Так, гипотеза о том, что вероятность рождения ребенка мужского пола равна 105/205, лучше согласуется с реальными статистическими наблюдениями.
Исчисление вероятности, таким образом, систематизирует наш опыт относительно наипростейших допущений, которые также объясняют и появляющиеся исключения. Разумеется, ни одна гипотеза относительно вероятности какого-нибудь события не может быть полностью опровергнута конечным числом наблюдений, поскольку даже очень значительные расхождения от наиболее вероятных в теоретическом смысле результатов не являются невозможными. Однако статистические результаты могут показать, что одни гипотезы менее вероятны, чем другие.
Согласно такой точке зрения вероятность не имеет дела с силой субъективных чувств. Она фундирована в природе классов событий. А для определения вероятности классов событий требуются объективные данные. При этом следует отметить, что при таком подходе вероятность уникального случая бессмысленна. Когда мы говорим о вероятности единичных случаев, то получается, что мы говорим эллиптически, т. е. ведем речь о некоторой фазе события, которая является общей и для других событий подобного вида. Поэтому, когда мы говорим, что вероятность выпадения орла для данной монеты при определенном броске равна ?, то мы на самом деле имеем в виду то, что при большом количестве подобных бросков примерно в половине из них выпадет орел. Когда мы говорим, что при двух бросках монеты вероятность выпадения двух орлов равна ?, мы имеем в виду то, что при достаточно большом количестве серий из двух бросков количество серий, содержащих двух орлов, будет примерно равняться ? от общего количества серий.
Неотложным следствием из вышесказанного является предостережение от того, что называется «ошибкой игрока». Допустим, мы вступаем в игру с монетой. Предполагается, что игра «честная», т. е. в ней вероятность выпадения орла равна ?, а броски являются независимыми. Предположим, имеется серия из 20 выпавших подряд орлов, и мы хотим сделать ставку на результат следующего броска. Какова вероятность того, что при следующем броске выпадет орел? Многие игроки заключают, что вероятность выпадения орла меньше, чем ?, на том основании, что, предположительно, количество орлов и решек должно «сравняться», если монетка не является поддельной. Однако подобное заключение является неверным, а все так называемые системы, разрабатываемые игроками для обеспечения выигрыша, неизбежно пагубны для тех, кто ими пользуется. Если монета, действительно, не поддельная, то 20 выпавших подряд орлов никак не влияют на результат 21 броска. Когда мы говорим, что вероятность выпадения орла на 21-м броске равна ?, то мы подразумеваем длинную серию бросков. С другой стороны, если монета подделана, с тем чтобы выпадали орлы, то, разумеется, вероятность того, что на 21-м броске выпадет орел, больше, а не меньше, чем ?. Из работ Лапласа известна история о мужчине, который должен был в скором времени стать отцом. По мере приближения дня родов он заметил, что за предыдущий месяц в общине родилось больше девочек, чем мальчиков.
Вследствие этого он сделал большую ставку на то, что у него родится мальчик.
Наконец, нам следует отметить, что вероятность не является внутренне присущей никакому событию. Она может быть свойственна событию только в терминах принадлежности к классу событий. Вероятность выпадения орла при броске монеты рукой может быть ?, вероятность выпадения орла, если ту же монету потрясти внутри чашки, может быть иной. Здесь событие, именуемое «выпадением орла», обозначает два различных класса. А вообще класс событий, к которому принадлежит конкретное событие, всегда следует учитывать при оценке вероятности данного события.
Сформулированная теория вероятности сталкивалась с рядом возражений. Похоже, данная теория не способствует интерпретации того, что мы имеем в виду, когда говорим о вероятности истинности теории или вероятности истинности суждений, описывающих определенные события. Мы зачастую заявляем, что гелиоцентрическая система более вероятна, чем геоцентрическая. Что все это означает с позиции теории вероятности как относительной частоты? При этом мы неоднократно повторяем суждения, подобные следующим: «Вероятно, сегодня пойдет дождь», «невероятно то, что Геркулес был исторической фигурой», «вероятно, что даже если бы Наполеон одержал победу при Ватерлоо, он не смог бы долго оставаться императором Франции». Подобные утверждения нелегко интерпретировать, используя обычную теорию вероятности по частоте. Однако подобные возражения не являются фатальными, и на них можно дать ответ, несколько видоизменив техническое выражение частотной теории.
Вероятность как частота истинности типов аргументов
Мы возвращаемся к анализу вероятностного вывода, который мы описали в начале данной главы. Третья интерпретация вероятности восходит к работам Чарльза Пирса. Мы уже говорили об объективных основаниях вероятности, свойственных излагаемому подходу. Теперь же мы намерены обозначить масштаб данной интерпретации.
Предположим, некая трамвайная компания стремится получить привилегии на территории города и решает, что наиболее эффективный способ достигнуть цели – это дать взятку представителям городской администрации. Для этого требуется немало осторожности, поскольку если с подобным предложением подойти к члену городского совета, преисполненному чувством гражданского долга, то все дело может быть провалено. Следует ли представителям компании подойти к члену совета А? О нем известны следующие факты, которые считаются существенными:
1. Он является членом совета, а это значит, что он – профессиональный политик.
2. Он – веселый ирландец, способный видеть в шутке ее суть.
3. Он – правоверный католик и проповедует высокие моральные принципы.
4. Он владеет недвижимостью и подозревается в мошеннических сделках, также связанных с недвижимостью.
5. Он – член местного школьного совета и вручает призы школьникам, продемонстрировавшим успехи в учебе.
6. Он никогда официально не протестовал против коррупции в государственных учреждениях.
Насколько вероятно то, что он примет плату в обмен на свой голос, если взятка будет ему предложена должным образом? Рассмотрим первый пункт. Если бы это было единственное обстоятельство, известное о мистере А, то теория вероятности по частоте истинности интерпретировала бы вероятность того, что мистер А примет взятку следующим образом. Рассмотрим класс истинных суждений n, полученных из выражения «X является политиком» путем придания переменной X конкретных значений. Рассмотрим также класс суждений nt, полученный путем придания тех же значений переменной X, стоящей в суждении «X является политиком, и X является мздоимцем». Некоторые из суждений, полученных во втором наборе, являются истинными, другие – ложными. Тогда предельная величина отношения nt/n определяется как вероятность того, что каждый отдельный индивид, например мистер А, будет брать взятки на том основании, что он является политиком. Иными словами, вероятность истинности суждения относительна частоте, с которой из класса умозаключений могут быть получены истинные заключения при истинных посылках. Вообще говоря, мы не знаем точного нумерического значения этого отношения. В таком случае мы говорим, что заключение является вероятностным при данных основаниях, если из класса таких умозаключений чаще следуют истинные заключения, чем ложные.
Однако что если основания для истинности суждения являются более сложными, чем только что рассмотренные? В таком случае анализ аргумента также становится более сложным: однако интерпретация вероятностного вывода остается той же. Если бы нам нужно было рассмотреть первые два пункта, относящиеся к мистеру А, то класс суждений n был бы получен из суждения «X является политиком и X является веселым ирландцем», тогда как класс nt был бы получен из суждения «X является политиком, и X является веселым ирландцем, и Х является мздоимцем». Предельная величина отношения nt/n будет вновь определять вероятность того, что мистер А является мздоимцем на том основании, что он – веселый ирландский политик. Сходные соображения применялись бы и в том случае, если бы мы рассматривали в качестве оснований все шесть истинных суждений о мистере А.
В большинстве случаев, как мы уже замечали, нумерическое значение коэффициента вероятности неизвестно. В таких случаях нам приходится довольствоваться более или менее смутными представлениями, а иногда и сущими догадками относительно его величины. Зачастую основания могут быть столь сложны, что нумерическая оценка частоты истинности становится невозможной по практическим причинам. Это, однако, не губительно для такой интерпретации, поскольку мы способны рассуждать при неопределенных коэффициентах так же, как и при определенных. Великое достоинство теории вероятности как частоты истинности заключается 1) в успешности, с которой она интерпретирует как определенные нумерические вероятности, так и неопределенные, и 2) в ее способности предоставлять объективное прочтение вероятности истинности суждений, описывающих единичные события.
1. Теория частоты истинности может вместить в себя все теоремы исчисления вероятности, а также принять статистическое обоснование вероятности посредством простого изменения некоторых аспектов терминологии. Вместо обсуждения событий, таких как выпадение орла, теория частоты истинности будет рассматривать суждение «эта монета упадет орлом вверх при следующем броске». Вместо того чтобы говорить о классе событий, эта теория будет обсуждать класс умозаключений. Не вызывает сомнения то, что относительная частота, с которой суждение «эта монета упадет орлом вверх при броске X» является истинным или когда истинным является суждение «эта монета брошена при специфических условиях при броске X», должна быть такой же, как и относительная частота появления события выпадения орла в серии бросков монеты. Сходным образом независимые, взаимоисключающие и сложные события рассматриваются в терминах независимых, взаимоисключающих и сложных суждений.
2. Вероятность реальных единичных событий оценивается с помощью теории частоты истинности в терминах вида оснований, предлагаемых для каждого события. Что касается доказательной силы оснований, то она зависит уже от фактического положения дел. Сказать «вероятно, что сегодня пойдет дождь» означает, что истинность суждений, сообщающих о текущем поведении барометра, изменениях температуры, облачности неба и т. д. по факту сопровождается с определенной относительной частотой истинностью суждений, в которых утверждается выпадение осадков в течение определенного количества часов [50] .
Последнее предостережение поможет нам избежать часто встречающихся спутываний. Если бессмысленно говорить о покоящемся или движущемся теле безотносительно какого-либо другого тела, то также бессмысленно говорить и о вероятности события или истинности набора суждений безотносительно определенных оснований или материальных допущений. Если же, несмотря на это, мы все равно время от времени говорим о покоящихся телах, то это только потому, что мы столь часто подразумеваем Землю как референтное тело, что зачастую не считаем нужным его упоминать. Так же происходит и в философии: когда мы говорим обо всех материальных суждениях или теориях как о всего лишь вероятных, мы подразумеваем отсылку к целому набору доступного знания, способного служить в качестве существенного основания.
Данное обстоятельство снимает затруднение, которое порой ощущается в том, что касается вероятности философских теорий и их отношения к миру в его целостности. «Универсумы, – как пишет Пирс, – не столь многочисленны, как ягоды ежевики». Однако с логической точки зрения действительный мир – это всего лишь один из класса возможных миров, и вероятность любой теории в отношении действительного мира является относительной частотой, с которой, согласно нашим приблизительным оценкам, теории данного типа являются истинными с опорой на реально доступные основания.
Специфические сложности, встречающиеся при изучении вероятностного вывода, заключаются в разложении большого многообразия подобных умозаключений на их составляющие элементы, в оценке доказательной силы каждого из этих элементов и в определении того, являются ли эти элементы независимыми друг от друга. Такая задача не для вводной и ознакомительной книги. Тем не менее, в более поздних главах у нас еще будет возможность исследовать более сложные формы вероятностного вывода.
Данный текст является ознакомительным фрагментом.