Сложные системы

We use cookies. Read the Privacy and Cookie Policy

Сложные системы

Будем считать сложными такие системы, в которых между элементами циркулируют не только частицы вещества и энергии, но и сигналы (рис. 6). В структуре сложных систем можно условно выделить рабочие подсистемы, ведающие преобразованиями вещества и энергии, и управляющие, которые воздействуют на рабочие с помощью сигналов. Хотя сигнал тоже имеет физическую, то есть вещественную и энергетическую, природу, но дело не в ней, а в характере сигнала, то есть его временной структуре и, особенно, месте приложения к управляемому объекту — в данном случае к рабочей подсистеме. При таких условиях — обязательность наличия управляющих сигналов и рабочих подсистем — грань сложных систем проходит на уровне одноклеточных существ: их управляющим органом является генетический аппарат ДНК, рабочими подсистемами — органеллы клетки (оболочка, митохондрии, лизосомы и др.). Роль сигналов выполняют информационные РНК. Макромолекулы — белки и нуклеиновые кислоты — достаточно сложны по структуре, но не удовлетворяют требованиям, предъявляемым к сложной системе. На более высоких уровнях иерархии систем эти условия соблюдены. Например, в организме органами управления являются нервная и эндокринная системы, сигналами — молекулы гормонов и медиаторов (передатчики нервных импульсов). Сообщество животных не всегда становится сложной системой. Только у высших млекопитающих и птиц есть внутренняя организация в стае и система управляющих сигналов, и только у человека эта система приобретает достаточную «зрелость». В обществе легко обнаружить структуры, аналогичные рабочим и управляющим подсистемам, в нем циркулируют многочисленные и разнообразные сигналы. Иерархия сложных систем представлена на рис. 7.

Рис. 7. Иерархия сложных систем.

Элементом сложной системы каждого уровня являются системы предыдущего уровня, в которых уже заложены некоторые качества высшей системы. Для организма — это клетки, для общества — люди. Элементом клетки являются макромолекулы. Они способны воспроизводить себя лишь при наличии ферментов, действующих извне. Именно поэтому макромолекулу нельзя считать сложной системой. Скачок от молекулы до клетки очень велик — этим определяются трудности объяснения возникновения жизни на Земле. На других, высших уровнях такие качественные скачки менее выражены. Клетки многоклеточных, будучи отделены от тела, способны еще некоторое время жить, так же как и отбившиеся от стаи животные. А уровень «зрелости» такой системы, как человеческое общество, возрастает буквально на наших глазах. Еще пять — десять поколений тому назад, когда преобладало натуральное хозяйство, большинство людей было способно существовать в условиях весьма ограниченных связей с обществом. Теперь же брошенный в лесу человек может погибнуть через несколько дней.

Самое общее качество сложных систем «типа живых» — способность к поддержанию своей целостности и к противодействию разрушающим влияниям окружающей среды. Однако оно не беспредельно, поэтому необходимо другое качество, более сложное в своем структурном выражении,— способность к воспроизведению самих себя. Еще более сложным качеством является способность к усложнению в процессе воспроизведения. В живой природе это выражается изменчивостью. В человеческом обществе усложнение структуры и функции наблюдается постоянно и является следствием феномена творчества и труда, отсутствующих в стае животных.

Принцип структурности предполагает, что для реализации всех этих качеств должны быть соответствующие структуры. Нужна структура для постоянного возобновления своих разрушающихся частей и для утилизации с этой целью энергии среды, нужны структуры для размножения и структурное выражение программы их «удвоения» и, наконец, необходимы некоторые структурные возможности для наращивания новых структур, то есть для усложнения. Более того, должны быть структуры, отражающие внешний мир, поскольку на него замыкается реализация программ, которые являются выражением названных «способностей». Программа творчества тоже требует структурного выражения.