ЛЕКЦИЯ № 12 Сложные суждения. Образование сложных суждений
ЛЕКЦИЯ № 12
Сложные суждения. Образование сложных суждений
1. Понятие сложных суждений
Понятие сложных суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией и отрицанием.
Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего одно простое суждение к другому. Именно так образуются сложные суждения. То есть сложные суждения — это суждения, созданные из двух простых.
Отношение истинности суждений отображается в таблицах. Эти таблицы отражают все возможные случаи истинности и ложности суждений, причем каждое из простых суждений, входящее в состав сложного, отражается в «шапке» таблицы в виде буквы (например, a, b). Истинность или ложность отражается в виде букв «И» или «Л» (истина и ложь соответственно).
Прежде чем рассматривать конъюнкцию, дизъюнкцию, импликацию, эквиваленцию и отрицание, имеет смысл дать им краткую характеристику. Данные логические связки называют логическими постоянными.
В литературе можно встретить их иное название — логические константы, однако от этого не меняется их суть. В нашем языке эти постоянные выражаются определенными словами. Так, конъюнкция выражается союзами «да», «но», «хотя», «зато», «и» и другими, а дизъюнкция — при помощи союзов «или», «либо» и др. Можно говорить об истинности конъюнкции, если истинны оба простых суждения, входящих в нее. Дизъюнкция истинна, когда истинно только одно простое суждение. Это относится к строгой дизъюнкции, нестрогая же истинна при условии истинности хотя бы одного из составляющих ее простых суждений. Импликация характеризуется истинностью всегда, кроме одного случая.
Рассмотрим сказанное выше подробнее.
Конъюнкция (a^b) — это способ связи простых суждений в сложные, при котором истинность полученного суждения напрямую зависит от истинности составных. Истинность таких суждений достигается только тогда, когда оба простых суждения (и а, и b) так же истинны. Если хотя бы одно из данных суждений ложно, то ложным следует признать и образованное из них новое, сложное суждение. Например, в суждении «Этот автомобиль очень качественный (а) и пробежал всего десять тысяч метров (b)» истинность зависит как от его правой стороны, так и от левой. Если оба простых суждения истинны, то истинно и сложное, образованное из них. В противном случае (если хотя бы одно из простых суждений ложно) оно является ложным. Это суждение является характеристикой конкретному автомобилю. Ложность одного из простых суждений, очевидно, не исключает истинности другого, и это может приводить к ошибкам, связанным с определением истинности сложных суждений, образованных при помощи конъюнкции. Конечно, истинность одного простого суждения не исключается ложностью другого, но не следует забывать, что мы даем характеристику предмету, и с этой точки зрения ложность одного из простых суждений рассматривается с другой стороны. Это связано с тем, что с ложностью суждения по одному из пунктов данной характеристики характеристика в целом становится ложной (другими словами, ведет к передаче неверной информации о машине в целом).
Дизъюнкция (a V b) бывает строгой и нестрогой. Отличие между этими двумя видами дизъюнкции состоит в том, что при нестрогом виде члены ее не исключают друг друга. Примером нестрогой дизъюнкции может быть: «Для получения заготовки деталь можно довести на станке (а) или предварительно обработать напильником (b)». Очевидно, что здесь а не исключает b и наоборот. Истинность подобного сложного суждения зависит от истинности его членов следующим образом: если ложны оба члена, ложным признается и образованное при их посредстве дизъюнктивное суждение. Однако, если ложно только одно простое суждение, такая дизъюнкция признается истинной.
Строгая дизъюнкция характерна тем, что ее члены исключают друг друга (в отличие от нестрогой дизъюнкции). Суждение «Сегодня я сделаю уроки (а) или пойду гулять на улицу (b)» является примером строгой дизъюнкции. Действительно, можно совершить в данный момент только одно действие — сделать домашнюю работу либо идти гулять, оставив уроки на потом. Поэтому строгая дизъюнкция истинна, только когда истинно лишь одно из простых суждений, входящих в нее. Это единственный случай истинности строгой дизъюнкции.
Эквивалентнция характеризуется тем, что образованное сложное суждение истинно только в тех случаях, когда истинны оба простых суждения, входящих в его состав, и ложно при ложности обоих этих суждений. В буквенном выражении эквивалентность выглядит как а = b.
При отрицании суждения, отображающееся как а, истинно тогда, когда ложно отрицаемое понятие. Это связано с тем, что отрицание и отрицаемое простое суждение не только противоречат, но и исключают (отрицают) друг друга. Таким образом, получается, что, когда истинно понятие а, ложно понятие а. И наоборот, если ложно а, то отрицающее его а является истинным.
Импликация (a — › b) истинна во всех случаях, кроме одного. Другими словами, если оба входящих в импликацию простых суждения истинны или ложны либо если ложно суждение а, импликация истинна. Однако при ложности суждения b ложным становится и сама импликация. Это можно рассмотреть на примере: «Мы бросим исправный патрон в костер (а), он взорвется (b)». Очевидно, что если первое суждение верно, то верно и второе, так как взрыв патрона, брошенного в костер, произойдет с неизбежностью. Поэтому, рассмотрев первый случай, мы можем сделать вывод о том, что если второе суждение ложно, то ложна и вся импликация.
Все рассмотренные выше примеры конъюнкции, дизъюнкции, импликации состояли из двух переменных. Однако это не всегда бывает так. Возможно наличие трех и более переменных. Рассматривая сложные суждения на предмет истинности, мы получаем буквенные формулы. Последние могут характеризоваться как истинностью, так и ложностью. В связи с этим тождественно-истинной называется формула, которая истинна при любых комбинациях своих переменных. Наименование тождественно-ложной имеет формула, которая принимает только ложное значение (значение «ложь»). Последним видом таких формул является выполнимая формула. В зависимости от комбинаций переменных, входящих в нее, она может принимать как значение «истина», так и значение «ложь».
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
§ 2. СЛОЖНЫЕ СУЖДЕНИЯ
§ 2. СЛОЖНЫЕ СУЖДЕНИЯ Сложными являются суждения, в которых можно выделить правильные части, являющиеся суждениями. Сложные суждения образуются из простых, а также из других сложных суждений с помощью логических союзов “если..., то...”, “или”, “и”, и т.д., с помощью
§ 5. Сложные суждения и их виды
§ 5. Сложные суждения и их виды Сложные суждeния образуются из нескольких простых суждений. Таково, например, высказывание Цицерона: «Ведь если бы даже ознакомление с правом представляло огромную трудность, то и тогда сознание его великой пользы должно было бы побуждать
Сложные суждения и их виды
Сложные суждения и их виды Сложным называют суждение, состоящее из нескольких простых, связанных логическими связками.Различают конъюнкцию (соединение), дизъюнкцию (разделение), импликацию (условность) и эквивалентность (тождественность).Конъюнкция – это суждение,
2.10. Сложные суждения
2.10. Сложные суждения Как мы уже знаем, простые суждения включают в свой состав один субъект и один предикат. Поимо простых суждений существуют также сложные суждения. Каждое сложное суждение состоит из простых суждений, соединенных каким-либо союзом. В зависимости от
2.11. Истинность сложных суждений
2.11. Истинность сложных суждений В предыдущем параграфе мы рассмотрели шесть видов сложных суждений, которые состоят из простых суждений, объединяемых каким-либо союзом: конъюнкцию, дизъюнкцию нестрогую и дизъюнкцию строгую, импликацию, эквиваленцию и отрицание.Союзов в
§ 3. КОМБИНИРОВАННЫЕ СЛОЖНЫЕ СУЖДЕНИЯ
§ 3. КОМБИНИРОВАННЫЕ СЛОЖНЫЕ СУЖДЕНИЯ Сложные суждения — соединительные, разделительные, условные и эквивалентные — используются в обычных рассуждениях и правовых контекстах как самостоятельно, так и в различных сочетаниях. Например, в соединительном суждении в
Глава VIII ДЕДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ. ВЫВОДЫ ИЗ СЛОЖНЫХ СУЖДЕНИЙ. СОКРАЩЕННЫЕ И СЛОЖНЫЕ СИЛЛОГИЗМЫ
Глава VIII ДЕДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ. ВЫВОДЫ ИЗ СЛОЖНЫХ СУЖДЕНИЙ. СОКРАЩЕННЫЕ И СЛОЖНЫЕ СИЛЛОГИЗМЫ Умозаключения строятся не только из простых, но и из сложных суждений. Широко используются умозаключения, посылками которых являются условные и разделительные суждения,
§ 2. СЛОЖНЫЕ СУЖДЕНИЯ
§ 2. СЛОЖНЫЕ СУЖДЕНИЯ Сложными являются суждения, в которых можно выделить правильные части, являющиеся суждениями. Сложные суждения образуются из простых, а также из других сложных суждений с помощью логических союзов “если..., то...”, “или”, “и”, и т.д., с помощью
2. Сложные суждения
2. Сложные суждения Образование и особенности сложных суждений. Напомним, что сложные суждения образуются из простых путем того или иного их соединения (а также, добавим здесь для полноты анализа, путем соединения простых со сложными и сложных между собой).Подобно простым
2. Непосредственные умозаключения из сложных суждений
2. Непосредственные умозаключения из сложных суждений Посылкой непосредственного умозаключения может быть не только простое — атрибутивное или реляционное, но и сложное суждение.Возьмем в качестве примера условное суждение (импликацию): «Если завтра будет солнечная
2. Непосредственные умозаключения из сложных суждений
2. Непосредственные умозаключения из сложных суждений 1. Правильно ли сделаны непосредственные умозаключения из следующих сложных суждений: «Если я сдам экзамен по логике, то пойду на дискотеку. Следовательно, если я не пошел на дискотеку, то не сдал экзамена по
27. Сложные суждения. Образование сложных суждений
27. Сложные суждения. Образование сложных суждений Понятие сложных суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией и отрицанием. Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего
30. Отрицание сложных суждений
30. Отрицание сложных суждений Отрицание суждения в логике – это замена существующей связки внутри сложного высказывания на другую, противоположную последней. Если мы говорим о формуле, в которой можно выразить отрицание сложных суждений, то нужно отметить, что
1. Понятие сложных суждений
1. Понятие сложных суждений Понятие сложных суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией и отрицанием.Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего одно простое суждение к
3. Отрицание сложных суждений
3. Отрицание сложных суждений Отрицание суждения в логике — это замена существующей связки внутри сложного высказывания на другую, противоположную последней. Если мы говорим о формуле, в которой можно выразить отрицание сложных суждений, то нужно отметить, что
§ 11. Сложные формы суждений
§ 11. Сложные формы суждений Из указанной выше основной формы суждения легко можно вывести традиционно различаемые в логике виды суждений. Так, исходя из простой основной схемы суждения (§ 9) можно дать представление о так называемом «синтетическом» суждении,