Сильный ИИ и китайская комната Серла
Сильный ИИ и китайская комната Серла
Существует точка зрения, называемая сильный ИИ, которая занимает весьма радикальную позицию по этим вопросам[31]. Согласно теории сильного ИИ, не только вышеупомянутые устройства будут разумны и наделены интеллектом — свойства разума могут быть присущи логическим действиям любого вычислительного устройства, даже простейших из них, механических, одним из которых является, например, термостат[32]. Основная идея заключается в том, что умственная деятельность — это просто выполнение некоторой хорошо определенной последовательности операций, часто называемой алгоритмом. Далее я уточню это понятие. А пока нам будет достаточно определить алгоритм как своего рода вычислительную процедуру. В случае термостата алгоритм чрезвычайно прост: устройство фиксирует повышение или понижение температуры по отношению к заданной величине и размыкает или замыкает цепь, соответственно. Алгоритм, соответствующий более-менее нетривиальной деятельности головного мозга, должен быть гораздо более сложноструктурированным, но — согласно концепции сильного ИИ — это будет все же алгоритм. Он будет очень значительно отличаться от простейшего алгоритма термостата по степени сложности, но не обязательно будет иметь принципиальные отличия. Таким образом, с точки зрения сильного ИИ, существенная разница между деятельностью человеческого мозга (включая все проявления сознания) и работой термостата состоит единственно в этой самой усложненности (или, возможно, «структуре более высокого порядка», или «способности обращения к самому себе», или в любом другом свойстве, которое можно приписать алгоритму), имеющей место в первом случае.
И, что более важно, все свойства ума — мышление, способность чувствовать, интеллект, понимание, сознание — должны рассматриваться, согласно этому подходу, просто как разные аспекты сложной деятельности; иными словами, они есть не более, чем свойства алгоритма, выполняемого мозгом. Достоинства любого конкретного алгоритма заключаются в его «технических характеристиках», таких как точность результатов, область применимости, экономичность и скорость выполнения. Алгоритм, нацеленный на подражание тому, что, как предполагается, действует в мозге человека, должен быть невообразимо сложным. Но если такой алгоритм для мозга существует — а это как раз то, что с уверенностью утверждают поборники идеи сильного ИИ, — то он в принципе мог бы быть запущен на компьютере. В сущности, он мог бы выполняться на любом современном компьютере общего назначения, если бы не имеющиеся ограничения по скорости и пространству для хранения данных. (Обоснование этого замечания будет дано позднее, когда мы перейдем к рассмотрению универсальной машины Тьюринга.) Предполагается, что такие ограничения будут сняты с появлением в недалеком будущем мощных быстродействующих машин. Тогда такой алгоритм, если он будет открыт, мог бы, вероятно, пройти тест Тьюринга. И как только он будет запущен, считают сторонники сильного ИИ, он будет сам по себе испытывать чувства, обладать сознанием, быть разумом.
Далеко не каждый согласится с тем, что разумные состояния и алгоритмы можно считать идентичными в указанном контексте. Наиболее остро критиковал эту точку зрения американский философ Джон Серл [1980, 1987]. Он приводил в пример ситуации, когда должным образом запрограммированный компьютер проходил упрощенную версию теста Тьюринга, и все же — он подкрепляет эти выводы очень сильными аргументами — «понимание» как свойство интеллекта полностью отсутствовало. Один из таких примеров базируется на компьютерной программе, разработанной Роджером Шенком (Шенк, Абельсон [1977]). Задачей программы была имитация понимания простых историй типа: «Мужчина вошел в ресторан и заказал гамбургер. Когда гамбургер принесли, оказалось, что он сильно подгорел, и рассерженный мужчина выскочил из ресторана, не заплатив по счету и не оставив чаевых». В качестве второго примера можно взять другую историю: «Мужчина вошел в ресторан и заказал гамбургер. Когда его принесли, мужчина остался им очень доволен. И, покидая ресторан, он дал официанту щедрые чаевые перед тем, как заплатить по счету». Чтобы проверить «понимание» этих историй компьютером, его «попросили» определить, съел ли мужчина гамбургер в каждом отдельном случае (факт, который не был упомянут в тексте явным образом). На этот простой вопрос к таким простым историям компьютер может дать ответ, совершенно неотличимый от того, что дал бы англоговорящий человек, а именно: «нет» в первом случае и «да» — во втором. Так что в этом, очень узком, смысле машина уже прошла тест Тьюринга!
Вопрос, к которому мы должны далее обратиться, будет таким: действительно ли подобный положительный результат указывает на истинное понимание, демонстрируемое компьютером — или, возможно, заложенной в него программы? Как аргумент в пользу отрицательного ответа на этот вопрос, Серл предлагает свою концепцию «китайской комнаты». Он сразу же оговаривает, что истории должны рассказываться на китайском, а не на английском языке — совершенно несущественная замена — и что все команды для компьютерного алгоритма в этом конкретном случае должны быть представлены набором (английских) инструкций для работы со счетами, на которые нанесены китайские символы. Проводя мысленный эксперимент, Серл представлял, что он сам выполняет все манипуляции внутри запертой комнаты. Последовательность символов, описывающая истории, и вопросы к ним подаются в комнату через небольшие прорези. Никакой другой информации извне не допускается. В конце, когда все действия выполнены, последовательность, содержащая ответ, выдается из той же прорези наружу. Поскольку все эти операции есть не что иное, как составляющие процедуры выполнения алгоритма по программе Шенка, то эта последовательность должна содержать просто китайские символы, означающие «да» или «нет» и дающие корректный ответ на вопрос, который — как, собственно, и сама история — был изложен по-китайски. При этом Серл недвусмысленно дает понять, что он не знает ни слова по-китайски, и посему не имеет ни малейшего представления о содержании рассказанных историй. Тем не менее, выполнив ряд действий, составляющих алгоритм Шенка (инструкции к которому были даны ему на английском языке), он справился бы с задачей не хуже китайца, способного без труда понять эти истории. Довод Серла — и весьма сильный, по моему мнению, — заключается в том, что простое выполнение подходящего алгоритма еще не говорит о понимании. (Воображаемый) Серл, запертый в китайской комнате, не понимает ни на йоту, о чем идет речь в этих историях!
Против доказательства Серла был выдвинут ряд возражений. Я изложу здесь только те из них, которые — на мой взгляд — имеют серьезное значение. Прежде всего, фраза «не знает ни слова», если рассматривать ее в вышеприведенном контексте, является не вполне корректной. Понимание относится не только к отдельным словам, но и к определенным шаблонам. И при выполнении подобных алгоритмов можно в достаточной степени разобраться в структурах, которые составлены из символов, значение каждого из которых в отдельности останется непонятным. Например, китайский иероглиф, соответствующий «гамбургеру» (если он вообще существует), можно заменить на название какого-нибудь другого блюда, допустим, «чоу мейн»[33]), существенно не изменив при этом содержание истории. Однако, мне все-таки кажется, что настоящий смысл историй (даже если считать такие подстановки незначительными) едва ли «дойдет» до того, кто будет просто скрупулезно выполнять шаг за шагом подобные алгоритмы.
Во-вторых, нужно всегда помнить о том, что выполнение даже сравнительно простой компьютерной программы оказывается в большинстве случаев длительным и трудным процессом, если за него берется человек, манипулирующий символами. (В конце концов, именно по этой причине мы доверяем такие действия компьютерам!) Если бы Серл в самом деле выполнял указанным выше способом алгоритм Шенка, то ему для ответа на совсем простой вопрос понадобились бы дни, месяцы, а то и годы изнурительно однообразной работы — не слишком правдоподобное занятие для философа! Однако, это не представляется мне таким уж серьезным возражением, поскольку здесь мы рассматриваем вопрос в принципе и не касаемся технических деталей. Больше затруднений вызывает предположение о наличии компьютерной программы, способной сравниться с человеческим мозгом и, тем самым, безупречно пройти тест Тьюринга. Любая подобная программа должна быть невероятно сложной. Нетрудно вообразить, что действие такой программы, необходимое для нахождения ответа даже на сравнительно простой вопрос теста Тьюринга, состояло бы из столь большого количества шагов, что ни для одного человеческого существа выполнение соответствующего алгоритма за период, равный средней продолжительности жизни, было бы невозможным. Так ли это на самом деле — трудно сказать, не имея подобной программы в своем распоряжении[34]. Но, в любом случае, вопрос о чрезвычайной сложности (программы), по-моему, игнорировать нельзя. Понятно, что мы говорим о принципиальной стороне дела; и все же мне не кажется таким уж невероятным существование некоторой «критической» степени сложности алгоритма, которой необходимо достигнуть, чтобы алгоритм начал обладать качествами разума. Возможно, это критическое значение так велико, что ни один алгоритм, имеющий столь сложную структуру, не может быть выполнен вручную ни одним человеческим существом, как то предлагает Серл.
Сам Серл в качестве контраргумента к последнему возражению предлагает заменить фигурирующего ранее «жильца» (самого себя) китайской комнаты — целой командой не понимающих китайский язык манипуляторов символами. Чтобы сделать это число достаточно большим, он даже допускает возможность замены своей комнаты всей Индией, где все население (кроме понимающих китайский!) будет производить действия над символами. Хотя с практической точки зрения это было бы безумием, принципиально это далеко не абсурдная модель, которая не вносит существенных изменений в первоначальные выводы: те, кто манипулирует символами, по-прежнему не понимают содержание историй, вопреки утверждениям сторонников сильного ИИ о том, что простое выполнение подходящего алгоритма вызвало бы возникновение присущего интеллекту свойства «понимания». Однако, теперь это возражение оттесняется на задний план другим, кажущимся серьезнее: что, если эти индийцы более похожи на отдельные нейроны в человеческом мозгу, чем на этот мозг в целом? Никто никогда не будет ожидать от нейронов, чье возбуждение, по-видимому, является центральным механизмом умственной деятельности, чтобы они сами понимали, о чем думает их «хозяин» — так почему же индийцы должны понимать китайские истории? Серл парирует это возражение, указывая на явную абсурдность представления об Индии как реальной стране, понимающей некую историю, в то время как все ее население не имеет о ней ни малейшего понятия. Страна, говорит он, как и термостат или автомобиль, не «занимается» пониманием — это прерогатива индивидуумов, проживающих на ее территории.
Этот аргумент выглядит значительно слабее предыдущего. Я думаю, что доказательство Серла наиболее убедительно в случае одного исполнителя алгоритма, где мы должны ограничиться алгоритмом, чья степень сложности допускает его выполнение за время, не превышающее нормальную продолжительность человеческой жизни. Я не рассматриваю этот аргумент как непреложное свидетельство того, что не существует никакого бестелесного «понимания», ассоциируемого с процессом выполнения алгоритма людьми, чье присутствие никак не влияет на их собственное сознание. Однако, я бы скорее согласился с Серлем, что эта возможность представляется, мягко говоря, малоправдоподобной. Мне сдается, что довод Серла весьма убедителен, хотя и не является решающим. Он с очевидностью демонстрирует, что алгоритм такой степени сложности, которой обладает компьютерная программа Шенка, не может иметь какого бы то ни было понимания выполняемых задач; также из него предположительно следует (и не более того), что ни один алгоритм, независимо от сложности его структуры, не может сам по себе воплощать настоящее понимание — вопреки утверждениям поборников сильного ИИ.
Существуют, на мой взгляд, и иные очень серьезные проблемы, связанные с сильным ИИ. Согласно этой точке зрения, единственное, что имеет значение — это алгоритм. И совершенно неважно, кто приводит его в действие: человеческий мозг, электронный компьютер, целое государство индийцев, механическое устройство из колесиков и шестеренок или система водопроводных труб. В рамках этой теории существенным для воплощения заданного «состояния разума» является сама логическая структура алгоритма, а его физическая реализация никакой роли не играет. Но, как указывает Серл, это может привести к определенной форме дуализма. Дуализм — это философское мировоззрение, апологетом которого был в высшей степени влиятельный философ и математик XVII века Рене Декарт, утверждавший, что существуют две различные субстанции: «разумная субстанция» и обычная материя. Влияют ли они друг на друга, и если да, то каким образом — это уже отдельный вопрос. Ключевое положение этой точки зрения заключается в гипотезе о том, что «разумная субстанция» не может состоять из материи обычной и способна существовать независимо от нее. «Разумная субстанция» в представлениях сильного ИИ — это логическая структура алгоритма. Как я отмечал выше, ее физическое воплощение не имеет никакого значения. Алгоритм обладает неким бесплотным существованием, никак не связанным с конкретной физической реализацией. Насколько серьезно мы должны воспринимать такой вид существования — вопрос, к которому мне придется вернуться в следующей главе. Он представляет собой часть более глобального вопроса о платонистической реальности абстрактных математических объектов.
Пока же я обойду эту общую тему стороной и отмечу только, что сторонники сильного ИИ, по-видимому, принимают всерьез возможность подобного существования в случае алгоритмов, полагая, что те являются самой «сущностью» их мыслей, чувств, понимания и сознательного восприятия. В связи с этим Серл указал на примечательный в своей ироничности факт: теория сильного ИИ может привести к крайней форме дуализма — к той точке зрения, к которой сторонники сильного ИИ менее всего хотели бы иметь отношение!
Эта дилемма просматривается в рассуждениях, предложенных Дугласом Хофштадтером [1981] — убежденным сторонником сильного ИИ — в диалоге с названием «Беседа с мозгом Эйнштейна». Хофштадтер выставляет на обозрение книгу, имеющую абсурдно большие размеры и содержащую, по его утверждению, полное описание мозга Альберта Эйнштейна. Идея такова: на любой вопрос, который кто-либо пожелал бы задать Эйнштейну, можно получить ответ в точности такой, каким был бы ответ живого Эйнштейна, если просто листать книгу и тщательно следовать всем приведенным в ней инструкциям. Конечно же, слово «просто» здесь совершенно неуместно, как то особо оговаривает сам Хофштадтер. Ведь смысл его утверждения иной: принципиально эта книга полностью эквивалентна (в операционалистском смысле теста Тьюринга) до смешного медленной «версии» настоящего Эйнштейна. Тем самым, если следовать положениям теории сильного ИИ, эта книга должна была бы думать, чувствовать, понимать и осознавать в точности так, как это делал бы сам Эйнштейн, только невероятно медленно (так что для этого «книго-Эйнштейна» внешний мир казался бы мелькающим перед ним с огромной скоростью). И естественно, что книга, представляющая из себя частную реализацию алгоритмизованной «сущности» Эйнштейна, была бы как раз-таки самим Эйнштейном.
Но тут возникает другая трудность. Книгу могут не открыть ни разу — или же, напротив, над ней будут корпеть многочисленные студенты и искатели истины. Как книга «поймет» разницу между этими двумя крайностями? Возможно, книгу даже не понадобится открывать, если в ход будет пущено считывание информации при помощи рентгеновской томографии или какое-нибудь другое технологическое чудо-средство. Осознает ли Эйнштейн, что книга изучается подобным образом? Будет ли он знать о двух попытках найти с его помощью ответ на один и тот же вопрос, если он был задан дважды, разными людьми и в разное время? Или это вызовет две разделенные по времени копии одного и того же состояния осознания? Возможно, акт осознавания будет иметь место только в случае изменений, произошедших с книгой? В конце концов, мы обычно осознаем нечто, когда получаем о нем информацию извне, которая воздействует на наши воспоминания и, естественно, несколько изменяет состояние нашего ума. Если это так, то означает ли это, что именно (соответствующие) изменения алгоритмов (здесь я рассматриваю хранилище информации как часть алгоритма) должны приниматься за события, происходящие в процессе умственной деятельности — а не само выполнение (хотя, быть может, и оно тоже) алгоритмов? Или же «книго-Эйнштейн» способен полностью осознавать себя даже в том случае, когда его никто не будет изучать и ничто не потревожит? Хофштадтер затрагивает некоторые из этих вопросов, но на большинство из них он даже не пытается по-настоящему ответить или хотя бы подробно разобраться с ними.
Что значит «запустить алгоритм» или «реализовать его физически»? Будет ли изменение алгоритма как-нибудь отличаться от его замены на другой алгоритм? И как же все это, черт побери, связано с нашими чувствами и осознаванием?! Читатель (если только он не принадлежит к лагерю сторонников сильного ИИ) может удивиться, видя сколько времени я уделяю такой заведомо абсурдной идее. Но я-то, и в самом деле, не считаю ее изначально абсурдной — только лишь неверной! Некоторые рассуждения, на которые опирается теория сильного ИИ, я считаю достаточно убедительными и попытаюсь обосновать свое мнение ниже. В некоторых идеях — если их модифицировать подходящим образом — есть, на мой взгляд, определенная привлекательность, которую я также постараюсь передать.
Более того: как мне кажется, те самые контраргументы, которые приводит Серл, в свою очередь тоже содержат ряд серьезных головоломок и кажущихся нелепостей — хотя, в какой-то степени, я с ним и согласен!
Серл в ходе своих рассуждений неявным образом признает, что сегодняшние электронные компьютеры, снабженные значительно увеличенными быстродействием и размерами устройств хранения информации с высокой скоростью обмена данными (и, возможно, параллельным выполнением операций), вполне могли бы в обозримом будущем успешно пройти тест Тьюринга. Он готов признать утверждение сторонников сильного ИИ (и многих других «научных» точек зрения), что мы «просто конкретные экземпляры реализации некоторого числа компьютерных программ». Более того, он соглашается и с тем, что: «Конечно, наш мозг является цифровым компьютером. Поскольку всё есть цифровые компьютеры, то и мозг — тоже[35]» Серл полагает, что разница между действием человеческого мозга (который может иметь разум) и электронным компьютером (который, как он утверждает, такого свойства не имеет), когда они выполняют один и тот же алгоритм, состоит исключительно в материальной конструкции того и другого. Он заявляет — правда, не давая этому никакого обоснования — что биологические объекты (мозг) могут обладать «ментальностью» и «семантикой», которые он считает основополагающими для умственной деятельности, тогда как компьютеры — нет. Само по себе, как мне кажется, это не может указать направление развития некой полезной научной теории интеллекта. Что уж такого особенного есть в биологических системах — если не принимать в расчет их «исторический» путь развития (и того, что мы оказались как раз такими системами), — что могло бы выделить их в качестве объектов, которым позволено «дорасти» до ментальности или семантики? Это заявление подозрительно напоминает мне догматическое утверждение, причем не менее догматического свойства, чем утверждения сторонников сильного ИИ о том, что, просто выполняя алгоритм, можно вызвать состояние осознанного восприятия!
По-моему, Серл, как и многие другие, были введены в заблуждение компьютерщиками. А тех, в свою очередь, сбили с толку физики. (Но это не вина физиков. Даже они не в состоянии знать все обо всем!) Вера в то, что «все на свете является цифровыми компьютерами», кажется общераспространенной. И я намерен показать в этой книге, что это совсем не обязательно так.
Данный текст является ознакомительным фрагментом.