Правила числового поля

We use cookies. Read the Privacy and Cookie Policy

Правила числового поля

Вспомните, что на данном поле могут происходить только те игры или процессы, которые соответствуют его правилам. Каковы правила числового поля? Вот они.

1. Замыкание. Первое правило числового поля – это правило всех полей: все, что происходит на этом поле, должно оставаться на поле, чтобы быть действительным. Все происходящее вне поля – вне игры, оно не будет считаться действительной частью игры. Без правила замыкания в идее поля было бы мало смысла. Оно дает полю границы или, как говорят математики, замыкание.

2. Сложение и вычитание. Второе правило, специфичное для числового поля, состоит в том, что мы должны быть способны складывать и вычитать в любое время дня и ночи и, разумеется, по-прежнему оставаться в границах поля.

Теперь давайте исследуем это правило. Будет ли бесконечная последовательность действительных положительных чисел 1, 2, 3, 4 и т.д. удовлетворять второму правилу числового поля? Нет! Почему нет? Потому что, хотя мы можем складывать любые два числа и их сумма всегда будет еще одни числом в этом поле, мы не можем вычитать любые два числа и по-прежнему получать число в поле. Например, если мы вычитаем 4 из 3, то получаем -1, отрицательное число, не принадлежащее к ряду положительных чисел.

Поэтому, чтобы получить числовое поле, подчиняющееся правилу, согласно которому мы можем складывать и вычитать и по-прежнему оставаться в поле, мы должны допустить присутствие в поле отрицательных чисел. Таким образом, чтобы иметь числовое поле, которое допускает сложение и вычитание, мы должны расширить нашу числовую систему, состоящую только из положительных чисел, включив в нее и отрицательные числа. Новое множество чисел, попадающих в поле таково:

-4, -3, -2, -1, 0, +1, +2, +3, +4

Рис. 6.2. Поле действительных чисел содержит положительные и отрицательные числа

Поле действительных чисел обладает замыканием, если мы складываем и вычитаем2. Но будет ли поле обладать замыканием, если мы также умножаем и делим? Для этого нам нужно включить в него понятия дробей. Если мы расширяем числовое поле, включая в него не только целые действительные числа, но и дроби, то можем не только складывать и вычитать, но даже умножать и делить, по-прежнему оставаясь внутри поля.

Короче говоря, удвоенное бесконечное множество положительных и отрицательных целых чисел (и всех промежуточных дробей) может называться числовым полем, поскольку оно удовлетворяет основным правилам числовой игры: поле обладает замыканием; мы можем перемещаться по игровому полю путем сложения, вычитания, умножения и деления и по-прежнему оставаться на поле. На таком поле можно выполнять любую из этих арифметических операций с любыми двумя числами, по-прежнему продолжая играть на поле.

Данный текст является ознакомительным фрагментом.