Масса, материя и реальность

Масса, материя и реальность

Произведем небольшую «ревизию» той картины мира, которую дала нам классическая физика. Во-первых, там существует пространство-время, выполняющее важнейшую функцию арены, на которой разыгрываются всевозможные физические процессы. Во-вторых, имеются физические объекты, задействованные в этих процессах, но ограниченные точными математическими законами. Физические объекты, о которых идет речь, бывают двух типов: частицы (корпускулы) и поля. Об истинной природе и отличительных особенностях частиц сказано немного, за исключением того, что у каждой частицы имеется своя мировая линия и каждая частица обладает индивидуальной массой покоя, (возможно) электрическим зарядом и т. д. С другой стороны поля описываются очень точно: электромагнитное поле удовлетворяет уравнениям Максвелла, а гравитационное поле — уравнениям Эйнштейна.

В описании частиц мы сталкиваемся с определенной двусмысленностью. Если частицы имеют столь малые массы, что их собственным влиянием на поля можно пренебречь, то такие частицы называются пробными частицами, и их движение под действием полей задается однозначно. Выражение для силы Лоренца описывает реакцию пробных частиц на электромагнитное поле, законы движения по геодезическим линиям — на гравитационное поле (или соответствующую комбинацию в случае присутствия обоих полей). Поэтому частицы надлежит рассматривать как точечные, т. е. имеющие одномерные мировые линии. Но в тех случаях, когда влиянием частиц на поля (и, следовательно, на другие частицы) пренебрегать нельзя, т. е. когда сами частицы становятся источниками поля, их следует рассматривать как объекты с ненулевой протяженностью в пространстве. Иначе поля в непосредственной близости от каждой частицы обращаются в бесконечность. Такие протяженные источники создают распределение заряда-тока (?, j), необходимое для уравнений Максвелла, и тензор ЭНЕРГИЯ, входящий в уравнения Эйнштейна. Наряду с этим пространство-время, вмещающее в себя все частицы и поля, обладает изменчивой структурой, которая сама по себе описывает гравитационные явления. «Арена» принимает участие в том самом действии, которое на ней разыгрывается!

Это то, что нам говорит классическая физика о природе физической реальности. Ясно, что хотя очень многое уже известно — не стоит пока благодушно тешить себя надеждой на то, что картины мироздания, рисующиеся нам сейчас, не будут однажды перечеркнуты с появлением более глубоких теоретических построений. В следующей главе мы увидим, что даже те революционные преобразования нашей картины, которые совершила теория относительности, бледнеют и кажутся почти незначительными по сравнению с нововведениями квантовой теории. Но мы пока не закончили изучение классической теории и далеко не исчерпали всех ее возможностей. А у нее для нас еще припасен один сюрприз!

Чем в действительности является «материя»? Это реальная субстанция, из которой состоят физические объекты — «вещи» окружающего нас мира. Это то, из чего состоим вы и я, то, из чего сделаны наши дома. Каким образом можно квантифицировать эту субстанцию, т. е. выразить ее количественно? В наших элементарных учебниках физики излагается ясный ответ, который дал на этот вопрос Ньютон. Мерой количества материи, содержащейся в объекте или в системе объектов, служит его (или их) масса. Такой ответ действительно кажется верным: другой физической величины, которая может всерьез конкурировать с массой за право называться истинной мерой всей материи, содержащейся в объекте, просто не существует. Кроме того, масса сохраняется: масса, а следовательно, и полное материальное содержимое любой системы всегда должно оставаться одним и тем же.

Однако знаменитая формула Эйнштейна из специальной теории относительности

E = mc2

свидетельствует о способности массы (m) превращаться в энергию (Е) — и наоборот. Например, когда атом урана участвует в процессе распада, распадаясь на меньшие осколки, полная масса каждого из осколков (если бы их можно было привести в состояние покоя), была бы меньше исходной массы атома урана — но если учесть энергию движения, т. е. кинетическую энергию (см. гл.5, подгл. «Динамика Галилея и Ньютона»)[137] каждого осколка и пересчитать ее в терминах массы, разделив на c2 (по формуле Е = mc2), то мы обнаружим, что суммарная энергия осколков осталась неизменной. Масса действительно сохраняется, но, поскольку она отчасти состоит из энергии, после распада атома могут возникнуть сомнения, что именно масса служит мерой количества вещества в составе объекта. Энергия, по существу, зависит от скорости, с которой движется материя. Энергия движения скорого поезда весьма значительна, но если мы сидим в вагоне этого поезда, то с нашей точки зрения поезд вообще не движется. Энергия движения скорого поезда (хотя и не тепловая энергия случайных движений его отдельных частиц) была «сведена к нулю» подходящим выбором системы отсчета. В качестве поразительного примера, весьма наглядно демонстрирующего действие соотношения масса-энергия Эйнштейна, рассмотрим распад одной из разновидностей субатомных частиц — так называемого ?°-мезона. Это — заведомо материальная частица, обладающая вполне определенной (положительной) массой. Через какие-нибудь 10-16 секунды ?°-мезон распадается (как атом урана, но гораздо быстрее), при этом почти всегда на два фотона (рис. 5.36).

Рис. 5.36. «Массивный» ?°-мезон распадается на два безмассовых фотона. Пространственно-временна?я картина показывает, как сохраняется 4-вектор энергии-импульса: 4-вектор ?°-мезона есть сумма 4-векторов двух фотонов, получаемая по правилу параллелограмма (на рисунке этот параллелограмм покрыт точками)

Для наблюдателя, покоящегося относительно ?°-мезона, каждый фотон уносит половину энергии и, в действительности, половину массы ?°-мезона. Однако, «масса» фотона носит несколько призрачный характер, ибо это — чистая энергия. Если бы мы получили возможность быстро двигаться в направлении одного из фотонов, то смогли бы уменьшить его массу до сколь угодно малой величины — поскольку собственная масса (или масса покоя — с этим понятием мы вскоре познакомимся) фотона равна нулю. Все сказанное вместе образует непротиворечивую картину сохраняющейся массы, но эта картина сильно отличается о той, которой мы располагали раньше. Масса может, как и прежде, служить в некотором смысле мерой «количества материи» — но наша точка зрения теперь кардинально изменилась: так как масса эквивалентна энергии, то масса системы, как и ее энергия, зависит от движения наблюдателя!

Сейчас нам стоит более четко сформулировать ту точку зрения, к которой мы в итоге пришли. Сохраняющаяся величина, которая исполняет роль массы — это единый объект, известный как четырехвектор энергии-импульса (или, в другой форме записи, 4-вектор энергии-импульса). Его можно условно изобразить в виде стрелки (вектора), исходящей из начала О пространства Минковского и направленной внутрь светового конуса будущего точки О (или, если речь идет о фотоне, — лежащей на поверхности этого конуса, см. рис. 5.35).

Рис. 5.35. 4-вектор энергии-импульса

Эта стрела, направленная в ту же сторону, что и мировая линия объекта, содержит всю информацию о его энергии, массе и импульсе. Таким образом, «t-значение» (или «высота») конца стрелки, измеренная в системе отсчета наблюдателя, описывает массу (или энергию, деленную на с2) объекта, а пространственные компоненты задают импульс (деленный на с).

«Длина» этой стрелки в смысле Минковского — это важная величина, известная как масса покоя. Она описывает массу объекта в системе отсчета наблюдателя, покоящегося относительно этого объекта. Можно было бы рассматривать такую величину в качестве хорошей меры «количества материи», входящей в состав указанного объекта. Но подобная величина не аддитивна: если систему разделить на две, то исходная масса покоя не равна сумме масс покоя возникших в результате деления частей. Напомним рассмотренный выше распад ?°-мезона. ?°-мезон имеет положительную массу покоя, тогда как масса покоя каждого из возникших в результате распада фотонов равна нулю. Но свойство аддитивности выполняется для всей стрелки (четырехвектора), по отношению к которой мы должны выполнять «сложение» векторного типа, как показано на рис. 5.36. Именно вся стрелка служит мерой «количества материи»!

Обратимся теперь к электромагнитному полю Максвелла. Мы уже отмечали, что оно переносит энергию. Значит, по соотношению Е = mc2 электромагнитное поле должно тоже иметь массу. Таким образом, и поле Максвелла представляет собой материю! И с этим утверждением теперь придется согласится, коль скоро поле Максвелла тесно связано с силами, удерживающими частицы вместе. Электромагнитные поля внутри любого тела должны вносить существенный вклад[138] в его массу.

А как обстоит дело с гравитационным полем Эйнштейна? Во многих отношениях оно напоминает поле Максвелла. Подобно тому, как в теории Максвелла заряженные тела, двигаясь, могут испускать электромагнитные волны, массивные движущиеся тела тоже могут (согласно теории Эйнштейна) порождать гравитационные волны (см. выше «Релятивистская причинность и детерминизм»), которые, как и электромагнитные волны, распространяются со скоростью света, перенося при этом энергию. Однако эта энергия не поддается измерению стандартным способом, т. е. не может быть определена тензором ЭНЕРГИЯ, о котором говорилось выше. Для (чисто) гравитационной волны этот тензор всюду равен нулю! Можно было бы принять точку зрения, согласно которой кривизна пространства-времени (не полностью задаваемая тензором ВЕЙЛЬ) может каким-то образом представлять «количество материи», заключенной в гравитационных волнах. Но оказывается, что гравитационная энергия нелокальна: изучая кривизну пространства-времени только в ограниченных областях, невозможно определить, какова мера гравитационной энергии. Энергия, а следовательно, и масса гравитационного поля ведут себя подобно скользкому угрю, так что их невозможно «привязать» в каком-нибудь четко определенному месту. Тем не менее, к гравитационной энергии следует относиться со всей серьезностью. Она заведомо присутствует, и ее необходимо учитывать для того, чтобы сохранить смысл понятия массы. Существует хорошая (и положительная) мера массы (Бонди [1960] и Сакс [1962]), которая применима к гравитационным волнам — но нелокальность такова, что, как оказывается, эта мера может иногда становиться ненулевой в плоских областях пространства-времени, расположенных между двумя всплесками излучения (совсем как «глаз» урагана), где пространство-время на самом деле полностью лишено кривизны (см. Пенроуз, Риндлер [1986]) (и где, следовательно, оба тензора — ВЕЙЛЬ и РИЧЧИ — равны нулю)! В таких случаях мы, по-видимому, вынуждены придти к заключению, что если эта масса-энергия вообще должна быть локализована, то она с необходимостью должна быть сосредоточена в этом плоском пустом пространстве — области, совершенно свободной от материи или полей любого рода. При таких любопытных обстоятельствах наше «количество материи» либо локализовано там, в самых пустых областях пустого пространства — либо ее вообще нигде нет!

Такое заключение кажется чистейшим парадоксом. Но мы знаем, что этот вывод непосредственно вытекает из тех сведений о природе «реальной» материи нашего мира, которые дают наши лучшие классические теории (а это действительно превосходные теории!). Согласно классической теории — не говоря уже о квантовой, к изучению которой мы скоро приступим — материальная реальность оказывается субстанцией гораздо более расплывчатой, чем казалось прежде. Задача ее количественного измерения — и даже само ее существование — связана только локально! Если такая нелокальность с необходимостью учета чрезвычайно тон — кажется вам загадочной — приготовьтесь к еще более сильным потрясениям!

Данный текст является ознакомительным фрагментом.