Несколько парадоксов или то, что похоже на них
И в заключение этого короткого рассмотрения логических парадоксов — несколько задач, размышление над которыми будет полезно для читателя.
Нужно решить, являются ли приводимые утверждения и рассуждения действительно логическими парадоксами или только кажутся ими. Для этого следует, очевидно, как-то перестроить исходный материал и попытаться вывести из него противоречие: и утверждение и отрицание одного и того же об одном и том же. Если обнаруживается парадокс, можно подумать над тем, с чем связано его возникновение и как его устранить. Можно даже попытаться придумать свой собственный парадокс такого же типа, т. е. строящийся по той же схеме, но на основе других понятий.
1. Тот, кто говорит: «Я ничего не знаю», высказывает как будто парадоксальное, внутренне противоречивое утверждение. Он заявляет в сущности: «Я знаю, что я ничего не знаю». Но знание того, что никакого знания нет, есть все-таки знание. Значит, говорящий, с одной стороны, уверяет, что никакого знания у него нет, а с другой — самим утверждением этого сообщает, что некоторое знание у него все-таки есть. В чем здесь дело?
Размышляя над этим затруднением, можно вспомнить, что Сократ выражал сходную мысль более осторожно. Он говорил: «Я знаю только то, что ничего не знаю». Зато другой древний грек, Метродор, с полной убежденностью утверждал: «Ничего не знаю и не знаю даже того, что я ничего не знаю». Нет ли в этом утверждении парадокса?
2. Исторические события уникальны. История, если она и повторяется, то, по известному выражению, первый раз как трагедия, а второй — как фарс. Из неповторимости исторических событий иногда выводится идея, что история ничему не учит. «Быть может, величайший урок истории, — пишет О.Хаксли, — действительно состоит в том, что никто никогда и ничему не научился из истории».
Вряд ли эта идея верна. Прошлое как раз и исследуется главным образом для того, чтобы лучше понимать настоящее и будущее. Другое дело, что «уроки» прошлого, как правило, неоднозначны.
Не является ли убеждение, будто история ничему не учит, внутренне противоречивым? Ведь само оно вытекает из истории в качестве одного из ее уроков? Не лучше ли сторонникам этой идеи сформулировать ее так, чтобы она не распространялась на себя: «История учит единственному — из нее ничему нельзя научиться», или «История ничему не учит, кроме этого ее урока»?
3. Испанский писатель Ф. Кеведо озаглавил свою сатиру: «Книга обо всем и еще о многом другом». Его не смутило то, что если книга охватывает «все», то для «многого другого» уже не остается места.
Шутливый афоризм «Не каждый человек, которому известно все, знает об этом», скорее всего внутренне противоречив. Не так ли?
Нет ли противоречия в утверждении «Простая истина в том, что все чрезвычайно сложно»? Если все без исключения сложно, то и знание этого не может быть простым.
4. «Доказано, что доказательств не существует». Это, как кажется, внутренне противоречивое высказывание: оно является доказательством или предполагает уже проведенное доказательство («доказано, что...») и одновременно утверждает, что ни одного доказательства нет.
Известный древний скептик Секст Эмпирик предлагал такой выход: вместо приведенного высказывания принять высказывание «Доказано, что никакого доказательства, кроме этого, не существует» (или: «Доказано, что ничего доказанного, кроме этого, нет»). Но не является ли этот выход иллюзорным? Ведь утверждается, по сути дела, что есть только одно-единственное доказательство — доказательство несуществования каких-либо доказательств («Существует одно-единственное доказательство: доказательство того, что никаких иных доказательств нет»). Чем тогда является сама операция доказательства, если ее удалось провести, судя по данному утверждению, только один раз? Во всяком случае, мнение самого Секста о ценности доказательств было не очень высоким. Он писал, в частности: «Так же, как правы те, кто обходится без доказательства, правы и те, кто, будучи склонным сомневаться, голословно выдвигает противоположное мнение».
5. Самый известный из древнегреческих софистов, Протагор, учил, что истинно все то, что кому-либо приходит в голову. Другой известный древнегреческий философ, Демокрит, обратил против Протагора его же собственный тезис. Если истинно всякое высказывание, то истинно и отрицание того, что утверждает Протагор. Истинно, значит, не только положение «Каждое высказывание истинно», но и положение «Не все высказывания истинны». А истинность последнего означает, что мнение о всеобщей истинности просто ложно.
Демокрит пытался, таким образом, выявить внутреннюю противоречивость позиции Протагора. Сходный ход мысли использовал и Аристотель, который говорил: «Кто объявляет все истинным, тем самым делает истинным и утверждение, противоположное его собственному».
Является ли обоснованным рассуждение Демокрита, направленное против тезиса Протагора: «Если всякое мнение истинно, то истинно и мнение, что некоторое мнение ложно; значит, не всякое мнение истинно»?
Другой древний софист, Ксениад, пришел к убеждению, что все мнения ложны и истинных мнений мет.
Парадоксально ли это убеждение? Можно ли опровергнуть его, рассуждая так: если все ложно, то ложно и то, что все ложно; следовательно, не каждое мнение ложно? Кажется, что этот ход мысли совпадает с тем, который был применен для доказательства ложности тезиса Протагора. Так ли это?
6. «Ни одно высказывание не является отрицательным», или проще: «Нет отрицательных высказывании».
Однако само это выражение представляет собой высказывание и является как раз отрицательным. Явный парадокс. С помощью какой переформулировки данного утверждения можно было бы избежать парадокса?
Средневековый философ и логик Ж. Буридан известен широкому читателю рассуждением об осле, который, стоя между двумя одинаковыми охапками сена, обязательно умрет с голоду. Осел, как и всякое животное, стремится выбрать из двух вещей лучшую. Две охапки совершенно не отличаются друг от друга, и потому он не может предпочесть ни одну из них. Однако этого «буриданова осла» в сочинениях самого Буридана нет. В логике Буридан хорошо известен, и в частности своей книгой о софизмах. В ней приводится такое умозаключение, относящееся к нашей теме: ни одно высказывание не является отрицательным; следовательно, существует отрицательное высказывание. Является ли этот вывод обоснованным?
7. В романе И. С. Тургенева «Рудин» есть такой диалог:
— Стало быть, по-вашему, убеждений нет?
— Нет — и не существует.
— Это выше убеждение?
— Да.
— Как же вы говорите, что их нет? Вот вам уже одно на первый случай».
Нет ли здесь чего-то общего с предшествующими примерами?
8. Хорошо известно описание Н. В. Гоголем игры Чичикова с Ноздревым в шашки. Их партия так и не закончилась. Чичиков заметил, что Ноздрев мошенничает, и отказался, играть, опасаясь проигрыша. Недавно один специалист по шашкам восстановил по репликам игравших ход этой партии и показал, что позиция Чичикова не была еще безнадежной.
Допустим, что Чичиков все-таки продолжил игру и в конце концов выиграл партию, несмотря на плутовство партнера. По уговору проигравший Ноздрев должен отдать Чичикову пятьдесят рублей и «какого-нибудь щенка средней руки или золотую печатку к часам». Но Ноздрев, скорее всего, отказывается платить, упирая на то, что он сам всю игру мошенничал, а игра не по правилам-это как бы и не игра. Чичиков может возразить, что разговор о мошенничестве здесь не к месту: мошенничал сам проигравший, значит, он тем более должен платить.
В самом деле, должен был бы платить Ноздрев в подобной ситуации или нет? С одной стороны — да, поскольку он проиграл. Но с другой — нет, так как игра не по правилам — это вовсе и не игра, ни выигравшего, ни проигравшего в такой «игре» не может быть. Если бы мошенничал сам Чичиков, Ноздрев, конечно, не обязан был бы платить. Но, однако, мошенничал как раз проигравший Ноздрев...
Здесь ощущается что-то парадоксальное: «с одной стороны...», «с другой стороны...», и притом с обеих «сторон» в равной мере убедительно, хотя эти стороны несовместимы. Должен все-таки Ноздрев платить или нет?
9. К бессмысленным относятся языковые выражения, не отвечающие требованиям синтаксиса или семантики языка. Бессмысленное представляет собой конфликт с правилами языка, выход за рамки установок, регламентирующих общение людей с помощью языка, и тем самым обрыв коммуникации и понимания.
Скажем, выражение «Если идет снег, то трамвай» нарушает правило, требующее соединять с помощью связки «если..., то...» только высказывания; в бессмысленном выражении «Квадратичность пьет воображение» смешиваются разные семантические категории.
Иногда говорят, что смысл бессмысленного в том, что оно не имеет смысла. Не является ли это парадоксом? Ведь выходит, что все без исключения имеет смысл, в том числе и бессмысленное.
10. «Всякое правило имеет исключения». Но ведь это утверждение само является правилом. Как и все иные правила, оно должное иметь исключения. Таким исключением будет, очевидно, правило «Есть правила, не имеющие исключений». Нет ли во всем этом парадокса? Какой из предыдущих примеров напоминают эти два правила? Допустимо ли рассуждать так: всякое правило имеет исключения; значит, существуют правила без исключения?
11. «Всякое обобщение ошибочно». Ясно, что это утверждение суммирует опыт мыслительной операции обобщения и само является обобщением. Как и все иные обобщения, оно должно быть ошибочным. А значит, должны иметься верные обобщения. Однако правильно ли рассуждать так: всякое обобщение неверно; следовательно, есть верные обобщения?
12. Некий писатель сочинил «Эпитафию всем жанрам», призванную доказать, что литературные жанры, разграничение которых вызывало столько споров, умерли и можно о них не вспоминать.
Но эпитафия, между тем, тоже жанр в некотором роде, жанр надгробных надписей, сложившийся еще в античные времена и вошедший в литературу как разновидность эпиграммы:
Здесь я покоюсь: Джимми Хог.
Авось грехи простит мне бог,
Как я бы сделал, будь я — бог,
А он — покойный Джимми Хог.
Так что эпитафия всем без изъятия жанрам грешит как будто непоследовательностью. Как лучше ее переформулировать?
12. «Никогда не говори «никогда».
Запрещая употребление слова «никогда», приходится дважды употреблять это слово!
Аналогично обстоит, как кажется, дело с советом:
«Пора бы тем, кто говорит «пора», сказать что-нибудь кроме «пора».
Нет ли в подобных советах своеобразной непоследовательности и можно ли ее избежать?
13. В стихотворении «Не верьте», напечатанном, естественно, в разделе «Ироническая поэзия», его автор рекомендует не верить ни во что:
...Не верьте в колдовскую власть огня:
Горит, пока кладут в него дровишки.
Не верьте в златогривою коня
Ни за какие сладкие коврижки!
Не верьте в то, что звездные стада
Несутся в бесконечной круговерти.
Но что же вам останется тогда?
Не верьте в то, что я сказал. Не верьте. (В. Прудовский)
Но реально ли такое всеобщее неверие? Судя по всему, оно противоречиво и, значит, логически невозможно.
14. У детей популярны загадки такого типа: что произойдет, если всесокрушающее пушечное ядро, сметающее на своем пути все, попадет в несокрушимый столб, который нельзя ни повалить, ни сломать? Ясно, что ничего не произойдет: подобная ситуация логически противоречива.
А вот аналогичный вопрос: может ли всемогущее существо создать неразрушимый предмет? Конечно, может — на то оно и всемогущее. Но раз оно всемогущее, ему ничего не стоит разрушить что угодно, в том числе и неразрушимый предмет. В итоге получается «разрушимый неразрушимый предмет». В чем источник этого противоречия?
16. Английский философ и логик Б. Рассел предложил следующий популярный вариант открытого им парадокса математической теории множеств.
Представим, что совет одной деревни так определил обязанности парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.
Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами. Обязанности парикмахера не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять деревенский брадобрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения.
Рассуждение о парикмахере может быть названо псевдопарадоксом.
Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.
Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки ни самих себя. Должен ли такой каталог включать ссылку на себя?
Нетрудно показать, что идея создания такого каталога неосуществима: он просто не может существовать, поскольку должен одновременно и включать ссылку на себя, и не включать.
Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.
Допустим, что в какой-то момент был составлен каталог, скажем, К1, включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К! не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим К3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.
Понятно, что по такой же схеме могут быть построены и другие рассуждения, напоминающие логический парадокс, но использующие иной конкретный материал. В чем суть этой схемы и какой конкретикой можно было бы ее наполнить?
17. Допустим, что, вопреки общему убеждению, неинтересные люди все-таки есть. Соберем их мысленно вместе и выберем из них самого маленького по росту, или самого большего по весу, или какого-то другого «самого...». На этого человека интересно было бы посмотреть, так что мы напрасно включили его в число «неинтересных». Исключив его, мы опять найдем среди оставшихся «самого...» в том же самом смысле и т. д. И все это до тех пор, пока не останется только один человек, которого не с кем будет уже сравнивать. Но, оказывается, этим он как раз и интересен! В итоге мы приходим к выводу, что неинтересных людей нет. А началось рассуждение с того, что такие люди существуют.
Можно, в частности, попробовать найти среди неинтересных людей «самого неинтересного из всех неинтересных». Этим он будет, без сомнения, интересен, и его придется исключить из «неинтересных людей». Среди оставшихся опять-таки найдется наименее интересный и т. д.
В этих рассуждениях определенно есть привкус парадоксальности. Допущена ли здесь какая-нибудь ошибка, и если да, то какая?
18. Допустим, что вам дали чистый лист бумаги и поручили описать этот лист на нем же. Вы пишете: это лист прямоугольной формы, белый, таких-то размеров, изготовленный из прессованных волокон древесины и т.д.
Описание как будто закончено. Но оно явно неполное! В процессе описания объект изменился: на нем поядился текст. Поэтому к описанию нужно еще добавить: а кроме того, на этом листе бумаги написано: это лист прямоугольной формы, белый... и т. д. до бесконечности. Кажется, что здесь парадокс, не так ли? Хорошо известен детский стишок:
У попа была собака,
Он ее любил.
Она съела кусок мяса,
Он ее убил.
Убил и закопал,
А на могиле написал:
«У попа была собака...»
Смог ли этот любивший свою собаку поп когда-нибудь закончить надгробную надпись? Не напоминает ли составление этой надписи полное описание листа бумаги на нем самом?
19. Один автор дает такой «тонкий» совет: «Если маленькие хитрости не позволяют достичь желаемого, прибегните к большим хитростям». Этот совет предлагается под заголовком «Маленькие хитрости». Но относится ли он на самом деле к таким хитростям? Ведь «маленькие хитрости» не помогают, и как раз по этой причине приходится прибегнуть к данному совету.
20. Назовем игру нормальной, если она завершается в конечное число ходов. Примерами нормальных игр могут служить шахматы, шашки, домино: эти игры всегда завершаются или победой одной из сторон, или ничьей. Игра, не являющаяся нормальной, продолжается бесконечно, не приводя ни к какому результату.
(Из этого следует, что мировые футбольные чемпионаты являются ненормальной игрой — они никогда не могут закончиться! — А.В.)
Введем также понятие сверхигра: первым ходом такой игры является установление того, какая именно игра должна играться. Если, к примеру, вы и я намереваемся играть в сверхигру и мне принадлежит первый ход, я могу сказать: «Давайте играть в шахматы». Тогда вы в ответ делаете первый ход шахматной игры, допустим, е2-е4, и мы продолжаем партию до ее завершения (в частности, в связи с истечением времени, отведенного турнирным регламентом). В качестве своего первого хода я могу предложить сыграть в крестики-нолики и т. п. Но игра, которая мною выбирается, должна быть нормальной; нельзя выбирать игру, не являющуюся нормальной.
Возникает проблема: является сама сверхигра нормальной или нет? Предположим, что это — нормальная игра. Так как первым ее ходом можно выбрать любую из нормальных игр, я могу сказать: «Давайте играть в сверхигру». После этого сверхигра началась, и следующий ход в ней ваш. Вы вправе сказать: «Давайте играть в сверхигру». Я могу повторить: «Давайте играть в сверхигру», и таким образом процесс может продолжаться бесконечно. Следовательно, сверхигра не относится к нормальным играм. Но в силу того, что сверхигра не является нормальной, своим первым ходом в сверхигре я не могу предложить сверхигру; я должен выбрать нормальную игру. Но выбор нормальной игры, имеющей конец, противоречит тому доказанному факту, что сверхигра не принадлежит к нормальным.
Итак, является сверхигра нормальной игрой или нет? Пытаясь ответить на этот вопрос, не следует, конечно, идти по легкому пути чисто словесных разграничений. Проще всего сказать, что нормальная игра — это игра, а сверхигра — всего лишь розыгрыш.
Какие другие парадоксы напоминает этот парадокс сверхигры, являющейся одновременно и нормальной, и ненормальной?