§ 4. Операции с классами

При помощи логических операций из двух или нескольких классов могут быть образованы новые классы. К этим операциям относятся: объединение классов, вычитание классов, пересечение классов и образование дополнения к классу.

В операциях с классами приняты следующие обозначения: А, В, С,... — произвольные классы, 1 — универсальный класс, 0 — нулевой (пустой) класс, символ ? обозначает объединение классов (сложение), символ ? — пересечение классов (умножение), А' (не-А) — дополнение к классу А (отрицание). В операциях с классами обычно используются круговые схемы, универсальный класс обозначается прямоугольником.

Операция объединения классов (сложение) состоит в объединении двух или нескольких классов в один класс, состоящий из всех элементов, входящих в слагаемые классы.

Операция объединения классов записывается с помощью символа сложения А ? В. Множество, полученное в результате сложения, называется суммой (на схеме полученное множество заштриховано).

Складывать можно множества, находящиеся в любых отношениях, например, множества, входящие в понятия, находящиеся в отношении подчинения: «юрист» (В) и «следователь» (А). Множество, полученное в результате сложения, включает юристов-следователей и юристов-неследователей (схема 14). Объединяя классы, находящиеся в отношении частичного совпадения: «юрист» (А) и «депутат Государственной Думы» (В), — получим множество, объединяющее юристов-недепутатов (1), юристов-депутатов (2) и депутатов-неюристов (3) — схема 15.

Операция вычитания классов дает класс, состоящий из элементов, исключающих элементы вычитаемых классов. Вычитая, например, элементы класса «следователь» (А) из класса «юрист» (В), получаем класс юристов-неследователей (схема 16). Вычитая элементы класса «юрист» (А) из класса «депутат Государственной Думы» (В), получаем класс депутатов Государственной Думы, не являющихся юристами. Множество, полученное в результате вычитания классов, заштриховывается (схема 17).

Операция пересечения классов (умножение) состоит в отыскании элементов, общих для двух или нескольких классов (множеств). Так, в результате умножения множеств, мыслящихся в понятиях «юрист» (А) и «депутат» (В), получаем новое множество: юристов-депутатов (схема 18).

Схема 14

Схема 15

Схема 16

Схема 17

Схема 18

Операция пересечения классов записывается с помощью символа умножения: А ? В. Множество, полученное в результате умножения, называется произведением (заштрихованная часть схемы). Умножать можно три и больше множеств. Так, умножая множества, входящие в понятия «юрист» (А), «депутат» (В) и «москвич» (С), получаем множество юристов, являющихся депутатами и москвичами (схема 19).

Схема 19

При умножении множеств, входящих в несовместимые понятия, например «следователь» и «адвокат», получаем нулевой (пустой) класс, так как элементов, входящих одновременно в оба понятия, не существует.

Образование дополнения (отрицание). Дополнением к классу А называется класс не-А (А'), который при сложении с А образует универсальную область. Эта область представляет собой универсальный класс и обозначается знаком 1. Чтобы образовать дополнение, нужно класс А исключить из универсального класса: 1 ? А = А'. Образование дополнения состоит, таким образом, в образовании нового множества путем исключения данного множества из универсального класса, в который оно входит. Так, исключая множество адвокатов из универсального класса юристов, образуем дополнение: множество юристов-неадвокатов. В своей сумме оба понятия образуют весь универсальный класс, соответствующий понятию «юрист» (схема 20).

Схема 20

Вопросы для самопроверки

1. Как образуются новые классы с помощью логических операций объединения классов (сложения), вычитания классов, пересечения классов?

2. Что представляет собой образование дополнения к классу?

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ