§ 9. Смысл аргументов Зенона
§ 9. Смысл аргументов Зенона
Анализ возражений Зенона против движения и основополагающих попыток опровержения его аргументов привел нас к примечательному результату, который мы предвидели в самом начале: возникающие трудности относятся не к движению как таковому, а связаны с ним лишь постольку, поскольку оно происходит в пространстве и времени. Только эти две существенные непрерывные формы служат основой парадоксов Зенона. Еще шаг вперед – и мы сможем также исключить время и иметь в виду только пространство, пространственные расстояния, пути и их взаимоотношения. И мы можем позволить себе даже совершенно радикальный способ рассмотрения, абстрагироваться также от самого пространства и сохранить в качестве объекта исследования только непрерывное количество или вообще просто континуум. Каковы, собственно, основные доводы, в которых заключается суть аргументов Зенона?
1. Расстояние, путь, не пройденный путь, а путь, который следует пройти – до какого-либо измерения и какого-либо движения, делим до бесконечности; он содержит актуальную бесконечность точек. Причем совершенно не имеет значения, «составляем» ли мы прямую из бесконечного количества точек или, напротив, рассматриваем ее в качестве первичного единства данности, и ограничиваемся тем, что выделяем в ней точки как вторичные элементы. В обоих случаях мы имеем дело с актуальной бесконечностью. Нам не нужны движение и движущееся: геометрическая прямая с ее актуальной бесконечностью точек уже противостоит для нас всем затруднениям дихотомии.
2. Существует принципиальная возможность установить определенную и взаимную корреляцию между всеми точками пути обоих объектов движения или, обобщеннее, между всеми точками двух отрезков линий различной длины. Очевидно, здесь мы в столь же малой степени, как и в первом случае, имеем дело с движением или с движущимся, но имеем дело единственно с отношениями между геометрическими единствами, между математическими величинами. Следовательно, парадоксы отнюдь не имеют только форономическое значение и форономическую ценность. Они находят значительно более широкое применение – мы могли бы сказать, что они, по сути, содержатся в каждой геометрической, алгебраической и арифметической формуле. Чтобы убедиться в этом, проще всего перевести парадоксы Зенона на математический язык и привести при этом несколько элементарных примеров:[346]
а) Дихотомия. Возьмем переменную Х на отрезке от О до А; тогда аргумент «дихотомия» состоит в указании, что переменная должна проходить в определенной последовательности все величины от О до А.
в) Ахиллес. Две переменные связаны отношением Y = A X. Каждой величине X соответствует одна и только одна величина Y, и наоборот. Несмотря на это, Y возрастает быстрее, чем X, пока, наконец, не становится Y = X + C.
c) Стрела. Переведенный на математический язык аргумент «стрела» означает следующее: все величины одной переменной являются постоянными.
d) Стадий. Этот аргумент еще раз показывает нам, что можно установить однозначное и взаимное соотношение между всеми точками двух или нескольких отрезков линий – невзирая на их данную величину; этот факт выражен формулой Y = A X.
Добавим сюда еще несколько простых примеров, которые позволят нам еще лучше понять смысл парадоксов Зенона, как абстрактных формул, освобожденных от форономических облачений. Мы хотим представить в рамках декартовых координат простейшую мыслимую формулу: Y = X.
Линия, заданная этой формулой, есть, очевидно, прямая. Каждая точка этой прямой с необходимостью имеет соответствующую точку на линии абсцисс, и наоборот: ни одна точка не может отсутствовать, а также ни одна не может соответствовать нескольким. Несмотря на это, O Xn < O Xn Yn. Другой пример, который можно рассматривать как геометрическое представление как «Ахиллеса», так и «стадия»: возьмем две параллельные прямые А и В; если угодно, даже равной величины. Пересечем теперь эти прямые перпендикуляром С, которому мы позволим вращаться относительно лежащей не на параллельных прямых точки О. Очевидно, что каждому положению точки О соответствуют две точки на прямых А и В и что, следовательно, все точки на прямой А находятся в однозначной и взаимной корреляции с точками прямой В – это притом, что соответствующий отрезок на прямой В равен лишь части отрезка на прямой А.
На это нам невозможно возразить, что вращением прямой С мы снова ввели движение; ведь вращающаяся прямая представляет не что иное, как пучок лучей, который исходит из точки О.
Возьмем какую-нибудь кривую линию, например, окружность. Как известно, в каждой точке окружности можно провести касательную, причем можно провести столько касательных, чтобы окружности не была «искривлена» ни в одной точке самой себя. Стало быть, где она тогда искривляется? Совершенно очевидно, что мы снова сталкиваемся с неискоренимой проблемой стрелы – а именно: «где» движется движущееся и как оно вообще движется, когда оно не движется ни в одной точке своего пути? Здесь в случае с окружностью, так же, как и в аргументе Зенона, можно найти выход из положения в отношении данной точки с непосредственно соседней или непосредственно следующей за ней в столь же малой мере (как это сделал Эвеллин), а именно попросту потому, что такой непосредственно соседней или следующей точки вообще нет. Тотчас же перед нами встает проблема «дихотомии», так как кажется невозможным перейти от начального положения к непосредственно следующему, поскольку такого следующего вообще не существует. Итак, как возможно движение?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Апории Зенона
Апории Зенона Элеаты — авторы первых логических задач и мысленных экспериментов. Они во многом предвосхитили платоновские упражнения в диалектике и аристотелевские упражнения в логике.Зенон из Элеи известен своими апориями (в переводе апория — затруднение, трудность)
5.9. Истинность и достаточность аргументов в доказательстве
5.9. Истинность и достаточность аргументов в доказательстве Согласно первому правилу доказательства по отношению к аргументам, аргументы, или основания должны быть истинными суждениями. Это наиболее очевидное правило, ведь в случае их ложности доказательство является
Обзор метафизических и физиологических аргументов в защиту материализма
Обзор метафизических и физиологических аргументов в защиту материализма О душеАргумент в защиту отдельного существования нематериальной души, помещенной в человеческом теле и соединенной с ним, состоит в следующем.Человек состоит из тела, которое, будучи живым,
3. Проблема бесконечности и своеобразие античной диалектики. Апории Зенона
3. Проблема бесконечности и своеобразие античной диалектики. Апории Зенона Зенон выдвинул ряд парадоксальных положений, которые получили название апорий («апория» в переводе с греческого означает «затруднение», «безвыходное положение»). С их помощью он хотел доказать,
7. Смысл
7. Смысл — Кажется, что в существовании есть некий смысл. Но этот смысл присутствует лишь отчасти, в порядке, строении, наследуемой в предании реализации, в существовании, которое создает для себя человек и которое он имеет в виду. Смысл как существование всегда
Александр Койре. Замечания к парадоксам Зенона
Александр Койре. Замечания к парадоксам Зенона Посвящается памяти Адольфа Райнаха § 1. Введение Подобно дискуссиям обо всех истинно философских проблемах, спор об аргументах Зенона или, точнее говоря, о парадоксах Зенона, вероятно, не завершится никогда. Если бы мы
§ 2. Аргументы Зенона
§ 2. Аргументы Зенона Согласно изложению Брошара, на статью которого мы ссылаемся в отношении всего, что касается интерпретации, четыре аргумента Зенона представлены в форме дилеммы. Два из них (Ахиллес черепаха и дихотомия) направлены против восприятия непрерывности и
§ 7. Анализ аргументов Бергсона
§ 7. Анализ аргументов Бергсона Мы столь же мало хотим оспорить объективную ценность как глубокого анализа Бергсона, так и анализа Ноэля. Мы даже хотим впоследствии попытаться их детальнее уточнить в некоторых моментах (например, пожалуй, очевидно, что движение не может
§ 8. Анализ аргументов Ноэля
§ 8. Анализ аргументов Ноэля Теория Ноэля не защищена от подобных же возможностей для нападок. Ведь даже если он, подобно Бергсону, не представляет движение осуществляющимся в неделимых актах или являющимся следствием таких актов, то его анализ устраняет затруднения
Парадоксы континуума Зенона и решение их Аристотелем [9]
Парадоксы континуума Зенона и решение их Аристотелем [9] Исторический анализ позволяет по-новому увидеть и глубже понять смысл современных дискуссий, посвященных проблеме континуума и различных его видов. В своей работе мы коснемся лишь наиболее важных, узловых моментов
3. Своеобразие античной диалектики. Апории Зенона
3. Своеобразие античной диалектики. Апории Зенона Зенон выдвинул ряд парадоксальных положений, которые получили название апорий (апория в переводе с греческого означает «затруднение», «безвыходное положение»). С их помощью он хотел доказать, что бытие едино и неподвижно,
Глава I. СМЫСЛ ЯВНЫЙ И СМЫСЛ СКРЫТЫЙ
Глава I. СМЫСЛ ЯВНЫЙ И СМЫСЛ СКРЫТЫЙ О вы, разумные, взгляните сами, И всякий наставленье да поймет, Сокрытое под странными стихами! Этими словами[1] Данте совершенно определенно указывает, что в его произведении содержится скрытый смысл, учение в собственном смысле слова,
Глава 6 Диалектика Зенона
Глава 6 Диалектика Зенона Зенон известен как автор остроумных головоломок, с помощью которых он пытался доказать невозможность движения, таких, как, например, задача об Ахилле и черепахе. Кое у кого может сложиться впечатление, что Зенона интересовали одни головоломки,
Смысл жизни и смысл смерти
Смысл жизни и смысл смерти Все отрасли культуры имеют структуру, придающую им высший смысл: через жертвы – к вечности. Сознание понадобилось для осознания смерти, осознание – для появления страха, страх – для его преодоления посредством жертвы, жертва – для развития
АПОРИИ ЗЕНОНА
АПОРИИ ЗЕНОНА Обратимся теперь к конкретным софизмам и тем проблемам, которые стоят за ними.Знаменитые рассуждения древнегреческого философа Зенона «Ахиллес и черепаха», «дихотомия» и др., называемые обычно «апориями» («затруднениями»), были направлены будто бы против