12. Следствия данного определения.

We use cookies. Read the Privacy and Cookie Policy

12. Следствия данного определения.

Определение истины, набросок которого был дан выше, приводит ко многим интересным следствиям.

В первую очередь, это определение оказывается не только формально корректным, но также и материально адекватным (в смысле раздела 4), иными словами, из него следуют все эквивалентности вида (Т). В этой связи важно заметить, что условия материальной адекватности единственным образом детерминируют объем термина "истина". Поэтому любое определение истины, которое материально адекватно, будет необходимо эквивалентно построенному выше. Семантическая концепция истины не дает нам, так сказать, возможности выбирать между различными неэквивалентными определениями этого понятия.

Кроме того, из нашего определения мы можем дедуцировать различные законы общего характера. В частности, с его помощью мы можем доказать законы противоречия и исключенного третьего, столь важные для аристотелевской концепции истины, т. е. мы можем показать, что только одно из двух противоречащих друг другу предложений истинно. Эти семантические законы не следует отождествлять с родственными логическими законами противоречия и исключенного третьего. Последние принадлежат пропозициональному исчислению, т. е. наиболее элементарной части логики, и вообще не включают в себя термина "истинно".

Другие важные результаты можно получить, применяя теорию истины к формализованным языкам очень широкого класса математических дисциплин. Из этого класса исключаются лишь дисциплины элементарного характера и весьма элементарной логической структуры. Оказывается, что для дисциплин этого класса понятие истины никогда не совпадает с понятием доказуемости, так как хотя все доказуемые предложения истинны, однако существуют истинные предложения, которые недоказуемы.[19] Отсюда вытекает, далее, что каждая такая дисциплина непротиворечива, но неполна. Это означает, что из любых двух противоречащих друг другу предложений доказуемо самое большее одно из них и существует пары противоречащих друг другу предложений, ни одно из которых недоказуемо.[20]