Магия чисел
Магия чисел
Сегодня, хотя большинство людей мало знают о свойствах чисел, относящихся к необщепринятой реальности, многие до сих пор верят, как и столетия назад, что числа обладают магическими свойствами. Точно так же, как мы используем особые геометрии, чтобы строить здания, например, с высокими остроконечными крышами, а также кресты, звезды и круги, чтобы представлять духовные идеи, древние и некоторые современные люди верили в магическую силу отдельных чисел. Например, считалось, что число 1 представляет единение, многие люди отождествляли число 2 с дьяволом или «двуличным», число 3 с судьбой (или Троицей в христианском мире), число 4 с целостностью и так далее3.
Эти верования отчасти связаны с количественными свойствами чисел. Например, число 1 не становится больше при умножении на само себя и не становится меньше при делении на себя. Вывод: число 1 обладает богоподобными свойствами. Оно является вечным, неизменным. Оно «одно единственное». Я говорил, что число 1 представляет сам процесс, нечто всегда присутствующее, постоянное как неизбежность изменения. Один – это первое простое число.
Простое число не имеет сомножителей, кроме самого себя и единицы. Например, число 6 не является простым, так как оно делится на 2 и 3 (или может быть получено умножением 2 х 3). То есть число 6 имеет сомножители (или делители), отличающиеся от него самого, а именно 2 и 3. Другие простые числа, кроме единицы, – это 2, 3, 5, 7, 11 и так далее и -2, -3, -5 и так далее.
Подумаем о числе 2. Это простое число, поскольку оно может быть разбито только на множители 1 х 2. Число два интересно тем, что оно дает одно и то же число при сложении с собой и умножении на себя, то есть 2 + 2 = 2 х 2 = 4. Легко видеть как можно проецировать на число 2 всевозможные магические или какие-то еще удивительные качества. Другие числа при сложении с собой дают другие результаты, чем при умножении на себя. Но не двойка
2 + 2 = 2 х 2!
Три – это простое число, которое представляет собой сумму предшествующих чисел (3 = 1 + 2).
Четыре – это первое непростое число, первый квадрат.
Многие отдельные люди и целые культуры верили, что числовые качества дат рождения и букв имен – это не просто случайности, а содержательные события, наполненные магическим значением. Например, если вы родились второго января, смысл вашей жизни будет связан с числами 2 и 1. Если ваше имя – Эми (AMY), то ваша жизнь будет связана с числовыми эквивалентами букв A, M и Y, то есть с числами 1, 8 и 25 и их качествами.
Для многих людей эти воображаемые качества чисел полны смысла, однако в нашей культуре не существует общепринятого мнения относительно символического смысла чисел. Некоторые люди полагают, что они вообще не имеют никакого смысла. Таким образом, числа имеют как общепринятые, так и необщепринятые аспекты. Ученые сосредоточиваются только на количественном аспекте чисел, ориентированном на общепринятую реальность, и полагают, что их необщепринятые качества не имеют отношения к пониманию реальности. На самом деле, ученые всегда надеялись, что числа в целом, независимо от того, как их называют, образуют логичную, неприступную систему, не допускающую иррациональных несовместимостей.
В 1931 г. Логик Курт Гёдель доказал (или напомнил тем, кто забыл), что определения общепринятой реальности для чисел и формул не являются неопровержимыми и не могут использоваться для доказательства своей собственной обоснованности с помощью дедуктивного рассуждения. Гёдель показал, что в математике имеются неизбежные противоречия; некоторые утверждения невозможно ни доказать, ни опровергнуть4. Поэтому мы не можем быть уверены в том, что наука математика не ведет к противоречиям или что числа свободны от магии.
В таком случае арифметика не может быть свободной от противоречий. Можно было бы подозревать, что теорема Гёделя обескуражит ученых, надеявшихся разработать набор аксиом, из которых можно будет выводить все феномены5. На мой взгляд, дело обстоит противоположным образом. Сегодня большинство ученых действуют так, как будто можно открыть окончательную теорему, из которой можно будет приемлемым образом выводить математические описания всех физических событий.
Единственное известное мне следствие теоремы Гёделя в психологии – это неписанное правило в умах некоторых терапевтов, таких как я сам, что человеческая раса непоследовательна и противоречива. Верно, что арифметические операции придают сновидениям и измененным состояниям сознания больше логики, чем кажется на первый взгляд, но эта логика – в большей степени общий принцип, нежели неизменный закон.
Данный текст является ознакомительным фрагментом.