Математика мнимых чисел
Математика мнимых чисел
История развития мнимых чисел весьма интересна, так как она следует по пути постоянных (и не вполне успешных) попыток избавиться от «вторичных качеств» природы. В XVII в. математики Джон Уоллис (1616-1703) и Готфрид Лейбниц (1646-1716), наряду с другими, обдумывали проблему квадратного корня отрицательных чисел. Они знали, что если взять квадрат с площадью, равной 1, то квадратный корень тоже будет равен 1.
Давайте еще раз подумаем о мнимых числах. Эти математики знали, что если нужно найти квадратный корень числа 4, это будет 2. Почему? Потому что, как я говорил ранее, если вы возводите число 2 в квадрат, то получается 4, то есть 2 х 2 = 4.
Что, умноженное само на себя, дало бы в результате отрицательное число? Ответа никто не знал. Поэтому математики пришли к выводу, что в их поле действительных чисел должно чего-то не хватать, так как в этом поле не было ничего такого, что давало бы им квадратные корни отрицательных чисел. Они знали, что им нужен новый вид числового поля, которое было бы расширенным вариантом поля действительных чисел, так как ничто в поле действительных чисел не вело к квадратному корню -1! Докажите это сами.
Квадратный корень из + 9 равен 3.
из +3 равен 1,732…
из +2 равен 1, 414.
из +1 равен 1,000.
из +0,5 равен 0,707.
Квадратный корень из +0,2 равен 0,447.
из +0,01 равен 0,100.
из -1 равен ???
Что такое квадратный корень -1??? Ничто в поле действительных чисел.
. -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5.
После некоторых размышлений о его возможной мистической природе математики, наконец, договорились подавлять мистицизм, связанный с i, и определять его чисто технически как квадратный корень -1.
Иными словами, они отделили свои чувства относительно ухода из реального числового поля и вхождения в новую сферу, которую они называли «мнимой», взамен создав практический набор определений. С чисто логической или математической точки зрения, они не могли находить квадратные корни отрицательных чисел и потому придумали один такой корень, приписав математическое свойство ?-1 одной букве алфавита! Результатом было и до сих пор остается то, что квадратный корень из -1 обозначается буквой i, то есть:
?-1 = i
Это обозначение интересно само по себе, но его истинная ценность открывается, когда вы производите следующее определение. Если вы умножаете мнимое число само на себя, то получаете действительное число, то есть:
i ? i = -1,
и значит
?-1 = i
Это определение означает, что существует связь между действительными и мнимыми числами. Это определение призвано быть логичным и не нуждающимся в объяснении. И это определение удивительно! Оно дает науке новое измерение.
Действительные числа можно непосредственно считать, а мнимые нельзя. Вы знаете, к чему относится число 5. Оно меньше, чем 6, и больше, чем 4. Но какое отношение имеет 5i к 5? Оно не больше и не меньше, чем 5, но и не равно 5! Вы можете сосчитать пять овец и называть это «5». Но 5i не имеет непосредственного, измеримого значения.
Первые изобретатели мнимых чисел считали эти числа мистическими, поскольку их нельзя было увидеть в реальности. Изобретатели надеялись, что эти числа – просто логические или умственные конструкции, что бы это ни означало. Однако Лейбниц думал иначе. Он не только определял мнимое число как i х i = —1, но и описывал его как «Святой Дух» математики, возможно, потому что его физическое значение не поддавалось непосредственному пониманию. Для него мнимое число было призраком – Святым Духом, стоящим за материальной реальностью. Для Лейбница мнимые числа были «утонченным и удивительным прибежищем божественного духа – почти промежуточной стадией между бытием и небытием…»
Для итальянского математика Рафаэля Бомбелли, жившего в 1575 г., мнимые числа были «сумасбродными мыслями». Леонард Эйлер (1701-1783) говорил: «такие числа по самой своей природе невозможны и обычно называются мнимыми или воображаемыми числами, поскольку они существуют только в воображении»5.
Было так, будто в науку снова и навсегда входили невидимые пространства! Мнимые числа подобны духам, поскольку их нельзя непосредственно измерять в общепринятой реальности. Измеримы только квадраты их природы, поскольку i в квадрате (i х i) равно -1; это действительное число, а i – нет. Таким образом, вплоть до сегодняшнего дня, спустя около четырехсот лет, никто точно не знает, к чему относятся мнимые числа.
Данный текст является ознакомительным фрагментом.