Индукция (Induction)
Индукция (Induction)
Вид доказательства, в классическом понимании определяемый как переход от частного к общему, или от фактов к закону. Тем самым противостоит дедукции, которая обычно идет от общего к частному, от принципа к следствиям.
Нетрудно догадаться, что индукция, расширяющая поле толкования, ставит перед нами гораздо больше вопросов, чем дедукция, сокращающая это поле. Приняв допущение, что все люди смертны, мы уже не будем сомневаться, что данный конкретный человек смертен: ведь единичное есть подмножество универсального. Но сколько человеческих смертей необходимо наблюдать, чтобы убедиться, что ни один из них не бессмертен? На практике, а также психологически – гораздо меньше, чем их умирает на самом деле. Но с точки зрения логики? Как осуществить переход от единичных суждений, число которых всегда конечно («Такой-то человек смертен, и такой-то тоже, и такой-то, и т. д.»), к суждению универсального характера («Все люди смертны»)? Именно это со времен Юма и именуют проблемой индукции. Сколько белых лебедей надо увидеть своими глазами, чтобы точно знать, что все лебеди белы? Сколько тел в свободном падении надо изучить, чтобы твердо усвоить: в пустоте все они падают с одинаковой скоростью? Надо или осмотреть всех лебедей и измерить скорость падения всех тел, что, разумеется, невозможно, или предположить, что после наблюдения некоторого количества случаев можно сделать вывод о том, что и все следующие наблюдения приведут к тем же результатам. Однако последнее предположение, а именно то, что будущее будет походить на настоящее, вовсе не разумеется само собой и не может быть доказано ни средствами дедукции (поскольку речь идет о фактическом вопросе), ни средствами индукции (поскольку всякая индукция уже содержит предположение). Следовательно, индукция всегда приводит к выводам, выходящим за рамки логических возможностей: формально она ненадежна, а эмпирически – сомнительна. Доверие, которое мы питаем к подобному виду доказательства, основано больше на привычке, как утверждает Юм, чем на логике («Трактат о человеческой природе», часть I, глава 3; «Исследование о человеческом познании», глава IV). Тем не менее в области познания мира обычно именно индукция поставляет дедукции общие принципы, из которых последняя выводит следствия. Если индукция сомнительна, так же сомнительна и дедукция в приложении к опыту. Да здравствуют Юм и скептицизм!
Для решения проблемы индукции лично мне видится всего один удовлетворительный путь. Это путь, предложенный Поппером, путь радикально-негативный. Поппер показал, что логически достоверной индукции не существует. Но как же тогда возможны экспериментальные науки? Благодаря дедукции. Мы формулируем принцип (гипотезу, закон, теорию), а уже из него выводим следствия (например, в форме предвидения). Если опыт опровергает эти следствия, значит, избранный принцип ложен. Если опыт не опровергает следствия и до тех пор, пока он их не опровергает, мы считаем принцип вероятно истинным. Это значит, что он хотя бы временно выдерживает испытание реальностью. Следовательно, «из эмпирических данных можно сделать вывод только о ложности теории, и вывод этот будет чисто дедуктивным» («Предположения и опровержения», I, 9; см. также «Логика научного исследования», часть I).
Аргументация Поппера, как отмечает он сам, построена на «асимметрии между верифицируемостью и фальсифицируемостью – асимметрии, которая возникает из логической формы универсальных высказываний»: из истинности единичных высказываний нельзя сделать вывод об истинности универсального высказывания (наличие десяти тысяч белых лебедей не может служить доказательством тому, что все лебеди белы). «Такое рассуждение, приводящее к утверждению ложности универсальных высказываний, – заключает Поппер, – представляет собой единственный вид выводов чисто дедуктивного типа, который идет, так сказать, “в индуктивном направлении”, т. е. от сингулярных высказываний к универсальным». Таким образом, не существует ни индуктивной логики, ни логически доказательной индукции. Есть лишь то, что можно назвать индуктивным следствием (мы легко совершаем переход от частного к общему или универсальному), которое и позволяет нам формулировать научные законы, например закон о падении тел. Эти законы возможно истинны и доступны эмпирической проверке. Наукам и человеческой деятельности большего и не требуется.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Научная индукция и ее методы
Научная индукция и ее методы Индукция, применяемая в единстве с дедукцией, называется научной индукцией. В этом случае индуктивные рассуждения дополняются объяснениями, опирающимися на законы или принципы. Например: люди в прошлом многократно наблюдали, что при трении
3.13. Что такое индукция?
3.13. Что такое индукция? Вспомним, опосредованные умозаключения делятся на дедуктивные, индуктивные и умозаключения по аналогии. Дедуктивные умозаключения, или силлогизмы, разновидности которых мы рассмотрели выше, дают достоверные выводы. Индуктивное умозаключение,
§ 2. ПОПУЛЯРНАЯ ИНДУКЦИЯ
§ 2. ПОПУЛЯРНАЯ ИНДУКЦИЯ В процессе многовековой деятельности люди наблюдали устойчивую повторяемость многих явлений, которые обобщались и использовались в объяснении наступивших и предсказании будущих событий.Такого рода обобщения связаны с наблюдениями над погодой,
§ 3. НАУЧНАЯ ИНДУКЦИЯ
§ 3. НАУЧНАЯ ИНДУКЦИЯ Научной индукцией называют умозаключение, в котором обобщение строится путем отбора необходимых и исключения случайных обстоятельств.В зависимости от способов исследования различают: (1) индукцию методом отбора (селекции) и (2) индукцию методом
Глава V. Индукция
Глава V. Индукция Другой, кроме дедукции, наиболее общий тип умозаключений — это индукция. В ней заключено глубокое своеобразие, и она находится в тесных взаимоотношениях с дедукцией. В реальной практике мышления ее сущность проявляется тоже в многообразных
2. Полная индукция
2. Полная индукция Полной индукция получается в том случае, если, во-первых, исследованы все элементы класса предметов и, во-вторых, если установлено, что каждому из них принадлежит (или не принадлежит) одно и то же общее свойство (отношение).В простейшем случае это выглядит
3. Неполная индукция
3. Неполная индукция Неполной индукцией называется умозаключение обо всем классе предметов в целом на основе изучения лишь части предметов данного класса.Формула неполной индукции:S1 — PS2 — P…..Sn — PS1, S2 ... Sn ... составляют часть класса S. Следовательно, все S — Р.В
Глава V. Индукция
Глава V. Индукция 1. Индукция как тип умозаключения Выразите структуру следующих индуктивных умозаключений в схематической форме и определите характер вывода: «Возьмем, например, исследование Роджера Бэкона о происхождении цветов радуги. Сначала у него, как кажется,
1. Индукция как тип умозаключения
1. Индукция как тип умозаключения Выразите структуру следующих индуктивных умозаключений в схематической форме и определите характер вывода: «Возьмем, например, исследование Роджера Бэкона о происхождении цветов радуги. Сначала у него, как кажется, была мысль связать
§ 6. Математическая индукция
§ 6. Математическая индукция «Но не забываете ли вы, что в математике также имеет место индукция?» – может возразить читатель. «Вы описывали математику как типичную дедуктивную науку, в которой все теоремы являются необходимыми следствиями аксиом. Однако вы ведь не
Глава XIV. Вероятность и индукция
Глава XIV. Вероятность и индукция 1. Проанализируйте следующий аргумент от аналогии, который использовал Бесиан Аррэ, доктор Сорбонны, в 1671 году:«Теология учит нас тому, что Солнце было создано для того, чтобы освещать Землю. Однако для того, чтобы освещать дом, нужно
НЕПОЛНАЯ ИНДУКЦИЯ
НЕПОЛНАЯ ИНДУКЦИЯ Индуктивное умозаключение, результатом которого является общий вывод обо всем классе предметов на основании знания лишь некоторых предметов данного класса, принято называть неполной или популярной индукцией. Например, из того, что инертные газы
Популярная индукция
Популярная индукция Популярная, она же народная индукция — это индукция через перечисление. Та самая, про которую мы говорили вчера. «Если три моих знакомых еврея хитры, то и все евреи хитры».Популярная индукция — одно из любимых орудий демагогов. Например: Василий
Научная индукция
Научная индукция Научная индукция работает иначе. Научная индукция объясняет свои выводы. Вернёмся к нашему примеру с хитрыми евреями. Научная индукция для этого примера может выглядеть так:«Мозг этих трёх евреев имеет особый отдел мозга, отвечающий за хитрость, и этот
Конт-Спонвиль Андре
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉