§ 6. Математическая индукция

We use cookies. Read the Privacy and Cookie Policy

§ 6. Математическая индукция

«Но не забываете ли вы, что в математике также имеет место индукция?» – может возразить читатель. «Вы описывали математику как типичную дедуктивную науку, в которой все теоремы являются необходимыми следствиями аксиом. Однако вы ведь не упустите из вида такой метод доказательства, как математическая индукция?».

Читатель, без сомнения, находится в ловушке слов. Действительно, существует метод математической индукции, однако это название не вполне удачно, поскольку подразумевает некое сходство с методом проведения экспериментов и подтверждения гипотез, использующимся в естественных науках. Однако такого сходства на самом деле нет, а математическая индукция является чисто доказательным методом.

Однако следует ли еще раз предостерегать читателя от распространенной ошибки спутывания временного порядка, в котором мы обнаруживаем те или иные суждения науки, и порядка их логической зависимости? Любой, кто когда-либо решал задачу по геометрии, знает, что существует подготовительная «стадия прощупывания», во время которой мы строим догадки, размышляем, строим вспомогательные линии и т. д. до тех пор, пока мы, как говорится, не наткнемся на доказательство. При этом никто не станет спутывать данную предварительную стадию, какой бы существенной она ни была, с достигаемым в итоге доказательством. Такая начальная стадия «прощупывания», действительно, обладает большим сходством с тем, как люди осуществляют исследования в какой бы то ни было сфере. Процесс проверки путем догадок характерен и для математического исследования, так же как и для исследования в естественных науках.

Принцип математической индукции может быть сформулирован следующим образом: если некоторое свойство принадлежит числу 1 и если, когда оно принадлежит числу п, можно доказать, что оно принадлежит и п + 1, то оно принадлежит всем числам. Докажем с помощью данного принципа следующую теорему для всех целочисленных значений п:

1 + 3 + 5 + 7 +… (2п – 1) = n2.

Очевидно, что это истинно для rt = 1. Теперь покажем, что, если то же самое имеет место и для числа п, то оно имеет место и для (п + 1).

a. 1 + 3 + 5 +… (2 n – 1) = n2.

Прибавив (2 n – 1) + 2 или (2 n + 1) к обеим сторонам уравнения, мы получим:

b. 1 + 3 + 5 +… (2 n – 1) + (2 n + 1) = n2 + (2 n + 1) = (n +1)2.

Однако Ь имеет ту же форму, что и а. Таким образом, мы показали, что если теорема истинна для числа п, то она истинна и для (n + 1). Она истинна для n = 1. Следовательно, она истинна для n = 1 + 1, т. е. для 2; следовательно, она истинна для n = 2 + 1, т. е. для 3, и т. д. для каждого целого числа, которого можно достигнуть путем последовательного прибавления 1. Таким образом, получившееся доказательство является абсолютно строгим, дедуктивным и всецело формальным. В нем нет никакой апелляции к эксперименту. А принцип математической индукции, как показывают современные исследователи, является частью самого значения конечных, или «индуктивных», чисел.

Данный текст является ознакомительным фрагментом.