1. Понятие доказательства

We use cookies. Read the Privacy and Cookie Policy

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее даже в серьезных рассуждениях доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение нужно доказывать, и т. п.

Одна из основных задач логики состоит в придании точного значения понятию доказательства. Но хотя это понятие является одним из основных в логике, оно не имеет точного, универсального определения, применимого во всех случаях и в любых научных теориях. Доказательство — это всего лишь рассуждение, убеждающее нас настолько, что мы готовы с его помощью убеждать других. Логическая теория доказательства в основе своей проста и доступна, но ее детализация требует специального символического языка и другой изощренной техники современной логики.

Под доказательством в логике обычно понимается процедура установления обоснованности некоторого утверждения путем приведения других утверждений, обоснованность которых уже известна и из которых с необходимостью вытекает первое.

Во всяком доказательстве имеются: тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются выведение утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все люди смертны». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все многоклеточные организмы смертны» и «Все люди являются многоклеточными организмами». Строим умозаключение:

Все многоклеточные организмы смертны.

Все люди являются многоклеточными организмами.

Следовательно, все люди являются смертными.

Данное умозаключение является правильным, посылки его истинны; значит, умозаключение представляет собой доказательство исходного тезиса.

Доказательство — это правильное умозаключение с обоснованными посылками. Логическую основу каждого доказательства (его, так сказать, схему) составляет логический закон (или система таких законов).

Отношение разных людей к одному и тому же доказательству может быть очень разным. Может случиться, что кто-то принимает определенное доказательство как нечто самоочевидное, в то время как другой убежден, что никакого доказательства на самом деле нет.

Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как в то время было принято, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что эти теоремы справедливы, и не изучал их доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное. Позднее Ньютон изменил свое мнение о необходимости доказательств в математике и других науках и очень хвалил Евклида как раз за безупречность и строгость его доказательств. Живший чуть раньше английский философ Т. Гоббс, прославившийся идеей, что социальная жизнь — это война всех против всех, до сорока лет ничего не знал о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: «Боже, но это невозможно!» И только позднее, проследив шаг за шагом весь ход доказательства, он убедился в его правильности и с неохотой, но смирился. Большинство из нас, конечно, думает, что ничего другого ему, собственно, и не оставалось. Большинство, но не все.

Мы уверены, например, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишенный индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.

Источником «принудительной силы» доказательств являются логические законы, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с уже принятым.

Задача доказательства — исчерпывающе утвердить обоснованность доказываемого положения. Раз в доказательстве речь идет о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер. Не существует индуктивных, правдоподобных доказательств.

Старая латинская пословица говорит: «Доказательства ценятся по качеству, а не по количеству». В самом деле, логический вывод из истины дает только истину. Если найдены верные аргументы и из них логически выведено доказываемое положение, доказательство состоялось и ничего более не требуется.

Доказательство — один из многих способов убеждения. В науке — это один из основных методов. Можно сказать, что требование доказательности научного рассуждения определяет то «общее освещение», которое модифицирует попавшие в сферу его действия цвета. Этим «общим освещением» пронизываются все другие требования к научной аргументации.

Доказательство является эффективным способом убеждения во всех областях рассуждений и во всякой аудитории.

Приведем два примера доказательства, взятых из разных областей знания.

«Я хочу здесь доказать, — пишет теолог К. С. Льюис, — что не стоит повторять глупости, которые часто приходится слышать насчет Иисуса, вроде того, что «Я готов принять Его как великого учителя, но в то, что Он был Богом, верить отказываюсь. Именно этого говорить и не стоит. Какой великий учитель жизни, будучи просто человеком, стал бы говорить то, что говорил Христос? В таком случае он был бы или сумасшедшим — не лучше больного, выдающего себя за вареное яйцо, — или настоящим дьяволом. От выбора никуда не деться. Либо этот человек был и остается Сыном Божьим, либо он умалишенный, а то и хуже. Так что не будем нести всякой покровительственной чуши насчет учителей жизни. Такого выбора Он нам не оставил и не хотел оставлять». Эта аргументация носит характер доказательства, хотя структура ее не особенно ясна.

Более простым и ясным является рассуждение средневекового философа И. С. Эриугены: «И если блаженство есть не что иное как жизнь вечная, а жизнь вечная — это познание истины, то блаженство не что иное, как познание истины». Это рассуждение представляет собой прозрачное умозаключение, а именно категорический силлогизм, исследовавшийся еще Аристотелем.

Удельный вес доказательств в разных областях знания существенно различен. Они широко используются в логике, математике и математической физике. Но только эпизодически — в истории или в философии. Аристотель писал, имея в виду сферу приложения доказательств: «Не следует от оратора требовать научных доказательств, точно так же от математики не следует требовать эмоционального убеждения». Сходную мысль высказывал и Ф. Бэкон: «Излишние педантичность и жесткость, требующие слишком строгих доказательств в одних случаях, а еще больше небрежность и готовность удовольствоваться весьма поверхностными доказательствами в других, принесли науке огромный вред и очень сильно задержали ее развитие».

Доказательство — очень сильное средство и оно, как и всякое такое средство, должно использоваться узконаправленно.

Можно отметить, что все так называемые «доказательства существования бога» замышлялись их авторами именно как доказательства, то есть как выведение требуемого тезиса из некоторых самоочевидных истин. Например, самый знаменитый средневековый философ Ф. Аквинский так формулировал «аргумент неподвижного двигателя». Все вещи делятся на две группы: одни только движимы, другие движут и вместе с тем движимы. Все, что движется, приводится чем-то в движение, а поскольку бесконечное умозаключение от следствия к причине невозможно, в какой-то точке мы должны прийти к чему-то, что движет, не будучи само движимо. Этот неподвижный, но все приводящий в движение двигатель и есть бог. Логическая структура этого, как и всех пяти доказательств существования бога, приводившихся Аквинатом, очень неясна. И тем не менее его современникам подобные доказательства представлялись весьма убедительным.

Значение доказательства в формировании убеждений — и в особенности представлений человека о природе — переоценивалось в античности и в средние века. В новое время картина начала меняться с того момента, когда исследование мира утратило умозрительный характер, и ученые обратились к опыту, наблюдению и эксперименту.

На каждом из нас лежит «бремя доказательства» выдвигаемых положений. Важно постоянно думать о содержательной стороне дела. Вместе с тем существенно, чтобы обеспечивалось единство содержательности и доказательности. Никакие искусственные приемы, никакое красноречие не способны помочь, если нет хорошо обоснованных идей и убедительных доказательств.

Обычно доказательство протекает в очень сокращенной форме. Видя, например, чистое небо, мы заключаем: «Погода будет хорошей». Это доказательство, но до предела сжатое. Опущено общее утверждение «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух. Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько простое, что протекает почти неосознанно. Писатель В. В. Вересаев приводит такой отзыв одного генерала о неудачном укреплении, которое построил его предшественник: «Я узнаю моего умного предшественника. Если человек большого ума задумает сделать глупость, то сделает такую, какой все дураки не выдумают». Это рассуждение — обычное доказательство, заключение которого опущено. Наши рассуждения полны доказательств, но мы их почти не замечаем.

Нередко в понятие доказательства вкладывается более широкий смысл: под доказательством понимается любая процедура обоснования истинности тезиса, включающая ссылки на связь доказываемого положения с фактами, наблюдениями и т. д. Расширительное истолкование доказательства является обычным в гуманитарных и социальных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения рассуждениях. Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определенном отношении явления и т. п. Логического вывода в этом случае, конечно, нет, тем не менее предлагаемое обоснование называют «доказательством».

Широкое употребление понятия доказательства само по себе не ведет к недоразумениям. Но только при одном условии. Нужно постоянно иметь в виду, что обобщение, переход от частных фактов к общим заключениям дает не достоверное, а лишь правдоподобное знание.

Многие наши утверждения не являются ни истинными, ни ложными. Оценки, нормы, правила, советы, требования и т. п. не описывают рассматриваемую ситуацию. Они указывают, какой она должна стать, в каком направлении ее нужно преобразовать. От описаний мы вправе требовать, чтобы они являлись истинными. Но удачный приказ, совет и т. д. мы характеризуем как эффективный, целесообразный, но не как истинный.

В стандартном определении понятия доказательства всегда используется понятие истины. Говорят, что доказать некоторый тезис — значит логически вывести его из других, являющихся истинными положений. Но есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, можно и нужно быть и логичным, и доказательным. Возникает, таким образом, вопрос о существенном расширении понятия доказательства. Им должны охватываться не только описания, но и утверждения типа оценок, требований, идеалов норм и т. п. Задача переопределения понятия доказательства успешно решается современной логикой. Такие ее разделы как логика оценок и логика норм убедительно показывают, что рассуждения о ценностях также подчиняются требованиям логики и не выходят за сферу логического.

Предварительно можно определить доказательство как логическое выведение следствий из обоснованных посылок.

Неясность понятия доказательства связана и с тем, что не существует какого-то единого, так сказать «природного», понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много. Ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики.

Образцом доказательства, которому стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В прошлом веке отношение к математическому доказательству изменилось, математики разбились на группы, каждая из которых придерживалась своего истолкования доказательства. Исчезла уверенность в единственности и непогрешимости лежащих в основе доказательства логических принципов. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует эти критерии. Математическое доказательство представляет собой парадигму доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным. «Нельзя не признать, — пишет математик М. Клайн, — что абсолютное доказательство не реальность, а цель. К ней следует стремиться, но, скорее всего, она так никогда и не будет достигнута. Абсолютное доказательство не более чем призрак, вечно преследуемый и вечно ускользающий. Мы должны неустанно укреплять то доказательство, которым располагаем, не надеясь на то, что нам удастся довести его до совершенства».