2. Прямое и косвенное доказательство

We use cookies. Read the Privacy and Cookie Policy

Немецкий философ А. Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным: никто не может счесть его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального ее понимания. Это все равно, как если бы вас провели через лабиринт. В конце концов вы выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился».

Позиция Шопенгауэра, конечно, курьез, но в ней есть момент, заслуживающий внимания. Нужно уметь проследить каждый шаг доказательства, иначе его части лишатся связи, и оно может рассыпаться, как карточный домик. Но не менее важно понять доказательство в целом как единую конструкцию, каждая часть которой необходима на своем месте. Как раз такого целостного понимания не хватало, по все вероятности, Шопенгауэру. В итоге в общем-то простое доказательство представилось ему блужданиями в лабиринте: каждый шаг пути ясен, но общая линия движения покрыта мраком.

Доказательство, не понятое как целое, ни в чем не убеждает. Даже если выучить его наизусть предложение за предложением, к имеющемуся знанию предмета это ничего не прибавит. Следить за доказательством и лишь убеждаться в правильности каждого его последующего шага — это равносильно такому наблюдению за игрой в шахматы, когда замечаешь только то, что каждый ход делается по правилам игры.

Все доказательства делятся по своей структуре, по общему ходу мысли на прямые и косвенные.

При прямых доказательствах задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис.

Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения, антитезиса.

Например, нужно доказать, что астероиды подчиняются действию законов небесной механики. Известно, что эти законы универсальны: они распространяются на все тела в любых точках космического пространства. Отметив это, строим умозаключение: «Все космические тела подпадают под действие законов небесной механики; астероиды — космические тела; значит, астероиды подчиняются данным законам». Это прямое доказательство, осуществляемое в два шага: подыскиваются подходящие аргументы и затем демонстрируется, что из них логически вытекает тезис.

В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того чтобы отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным. Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от противного. Как с иронией замечает математик Д. Пойа, косвенное доказательство имеет некоторое сходство с надувательским приемом политикана, поддерживающего своего кандидата тем, что опорочивает репутацию кандидата другой партии.

К примеру, врач, убеждая пациента, что тот не болен гриппом, говорит ему, что если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т. п.; но ничего подобного нет; значит, нет и гриппа. Это — косвенное доказательство. Вместо прямого обоснования тезиса «У пациента нет гриппа» выдвигается антитезис «У пациента грипп». Из антитезиса выводятся следствия, но они опровергаются объективными данными. Отсюда следует, что тезис «Гриппа нет» истинен.

Другой пример. Оценивая чье-то выступление, мы можем рассуждать так. Если бы выступление было скучным, оно не вызвало бы стольких вопросов и острой, содержательной дискуссии. Но оно вызвало вопросы и дискуссию. Значит, выступление было интересным. Здесь вместо поиска аргументов в поддержку тезиса «Выступление было интересным» выдвигается антитезис «Выступление не являлось интересным». Затем выводятся следствия из него, но они не подтверждаются реальной ситуацией. Значит допущение о неудаче выступления неверно, а тезис об интересном выступлении истинен.

В зависимости от того, как показывается ложность антитезиса, выделяются различные варианты косвенного доказательства.

Чаще всего ложность антитезиса удается установить простым сопоставлением вытекающих из него следствий с фактами, опытными данными. Так обстояло, в частности, дело в рассуждениях, касающихся гриппа и выступления, вызвавшего вопросы и дискуссию.

По логическому закону противоречия одно из двух противоречащих друг другу утверждений ложно. Поэтому, если в числе следствий антитезиса встретились и утверждение, и отрицание одного и того же, можно сразу сказать, что это положение ложно.

К примеру, положение «Квадрат — это окружность» ложно, поскольку из него выводится и то, что квадрат имеет углы, и то, что у него нет углов.

Имеется еще одна разновидность косвенного доказательства, когда прямо не приходится искать ложные следствия. Дело в том, что согласно законам логики для доказательства утверждения достаточно показать, что оно логически вытекает из своего собственного отрицания.

Такую схему использовал однажды древнегреческий философ Демокрит (он, как известно, первым предположил, что все тела состоят из атомов) в споре с философом Протагором. Последний утверждал, что истинно все, что кому-либо приходит в голову, или «Всякое мнение истинно». На это Демокрит ответил, что из данного утверждения вытекает также истинность его отрицания, «Не каждое мнение истинно», поскольку само это отрицание тоже является мнением. И значит, данное отрицание, а не положение Протагора, на самом деле верно.

Для косвенного доказательства утверждения достаточно также показать, что оно логически вытекает из своего собственного отрицания.

В романе И. С. Тургенева «Рудин» есть такой диалог: «— Стало быть, по-вашему, убеждений нет? — Нет — и не существует. — Это ваше убеждение? — Да. — Как же вы говорите, что их нет? Вот вам уже одно на первый случай». Здесь ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: существует, по крайней мере, одно убеждение, а именно убеждение, что убеждений нет. Коль скоро утверждение «Убеждения существуют» вытекает из своего собственного отрицания, это утверждение, а не его отрицание является истинным и доказанным.

В рассмотренных косвенных доказательствах выдвигаются две альтернативы: тезис и антитезис. Затем показывается ложность последнего, в итоге остается только тезис. Можно не ограничивать число принимаемых во внимание возможностей только двумя. Это приведет к так называемому разделительному косвенному доказательству, или к доказательству через исключение. Оно применяется в тех случаях, когда известно, что доказываемый тезис входит в число альтернатив, полностью исчерпывающих все возможные альтернативы данной области.

Например, нужно доказать, что одна величина равна другой. Ясно, что возможны только три варианта: или две величины равны, или первая больше второй, или, наконец, вторая больше первой. Если удалось показать, что ни одна из величин не превосходит другую, два варианта будут отброшены и останется только третий: величины равны. Доказательство идет по простой схеме: одна за другой исключаются все возможности, кроме одной, которая и является доказываемым тезисом.

В разделительном доказательстве взаимная несовместимость возможностей и то, что ими исчерпываются все мыслимые альтернативы, определяется не логическими, а фактическими обстоятельствами. Отсюда обычная ошибка разделительных доказательств: рассматриваются не все возможности.