§ 2. Общая характеристика схем

Великий Кант ввел понятия схематизма рассудка и схемы, чтобы объяснить, как априорные категории и понятия соотносятся с предметами, данными в опыте. Он пишет: «Это формальное и чистое условие чувственности, которым рассудочное понятие ограничивается в своем применении, мы будем называть схемой этого рассудочного понятия, а способ, которым рассудок обращается с этими схемами, – схематизмом чистого рассудка… Следовательно, схемы чистых понятий суть истинные и единственные условия, способные дать этим понятиям отношение к объектам, стало быть, значение, и потому в конце концов категории не могут иметь никакого другого применения, кроме эмпирического, так как они служат лишь для того, чтобы посредством оснований а priori необходимого единства (ради необходимого объединения всего сознания в первоначальной апперцепции) подчинить явления общим правилам синтеза и таким образом сделать их пригодными для полного соединения в опыте» (33, с. 222, 226).

Обратим внимание: с точки зрения Канта, именно схемы придают категориям и понятиям значение. Но в то же время в кантовской системе роль схем и схематизмов не столь уж и велика: как подчеркивает Кант, «схема есть, собственно, лишь феномен или чувственное понятие предмета, находящееся в соответствии с категорией», имеющей независимое от всякой схемы и гораздо более широкое значение (см.: 33, с. 226–227). Другой интересный момент состоит в том, что хотя без схем мышление, по Канту, не может состояться, поскольку построить синтетическое суждение и получить в нем новое знание можно только при соотнесении априорных представлений с предметами опыта, тем не менее собственно логической характеристикой схемы не обладают, т. е. к мышлению они прямо не относятся (см.: 33, с. 227).

В кантовской системе подобное неоднозначное, если не сказать отчасти противоречивое понимание схем, в общем-то, понятно, но за пределами этой системы представления о схемах и схематизме мышления нуждаются в осмыслении, тем более что действительно без использования разного рода схем мышление невозможно. В современной методологии нередко можно встретить и утверждения (я их слышал, например, из уст Г. П. Щедровицкого и С. В. Попова) о том, что именно схемы, а не знания и понятия являются основными познавательными инструментами не только методологии, но и всех современных общественных и гуманитарных дисциплин. Однако даже и без таких сильных заявлений любой внимательный философ и ученый может заметить, сколь широкое применение имеют сегодня схемы. Интересный анализ происхождения и употребления схем в естественных науках мы встречаем в работах В. С. Степина, но он не рассматривал специально гносеологическую природу схем. Если же это делать, возникают вопросы. Чем являются схемы в познавательном отношении, по сути, ведь не ясно. Схемы – это не знания, хотя могут быть использованы для получения знаний (но каких?). Схемы сами по себе не являются объектами, однако часто задают объекты; именно в этом случае мы говорим об «онтологических схемах». Схемы – это и не понятия, хотя нередко именно со схем начинается жизнь понятий. Без схем современное мышление не могло бы состоятся, но после того, как оно «встает на ноги», часто исследователи вполне успешно могут обходиться без схем. Спрашивается, почему? И так далее и тому подобное – здесь что ни вопрос, удовлетворительного ответа на него нет.

Все это говорит за то, что возникла настоятельная необходимость в анализе и осмыслении схем и схематизмов мышления. Но как это делать? Вряд ли в рамках кантовской системы – она сама сегодня нуждается в осмыслении. Мне кажется естественным ходом обращение с этой целью к науковедению и современной методологии. Другое, не менее очевидное положение – необходимость изучения, сочетающего эмпрический и философско-методологический подходы. В качестве эмпирического материала я возьму два случая использования схем: один, очень ранний, донаучный в знаменитом диалоге Платона «Пир», другой более поздний, как раз ближе к научному, в не менее известной работе Галилея «Беседы» (точное название: «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению»). Кроме того, анализируя в этих произведениях схемы и их функции, я буду стараться, там, где это нужно, предоставить слово их создателям. Последнее поможет мне избежать излишней модернизации и приобрести добавочную степень правдоподобности в предложенной реконструкции.

В «Пире» мы находим несколько схем, которые я сначала перечислю. Во-первых, это схема двух Афродит. Один из участников диалога Павсий, (а диалог формально посвящен прославлению бога любви), говорит, что нужно различать двух разных Эротов, богов любви, соответствующих двум Афродитам – Афродите простонародной (пошлой) и Афродите возвышенной (небесной), и что только последняя полна всяческих достоинств.[1]

Во-вторых, схема андрогина и его метаморфоз. Другой участник диалога Аристофан рассказывает историю, в соответствии с которой каждый мужчина и каждая женщина ищут свою половину, поскольку они произошли от единого андрогинного существа, рассеченного Зевсом в доисторические времена на две половины.[2]

В-третьих, схема, описывающая путь людей, которые, как выражается Диотима, разрешаются в любви духовным бременем.[3] Этих людей, противопоставляемых обычным возлюбленным, вполне можно назвать эзотериками, конечно, в платоновском понимании эзотеризма.

Наконец, в-четвертых, в «Пире» можно найти схему, в которой любви приписываются такие качества, как гармония, рассудительность, мудрость, даже стремление к бессмертию.[4]

Почему перечисленные здесь образования я отношу к схемам? С одной стороны, потому, что они в тексте Платона ниоткуда не выводятся, а, напротив, сами являются источниками рассуждений о любви и получения о ней знаний. С другой – потому, что каждое такое образование представляет собой некую целостность в отношении последующих рассуждений о любви. Действительно, рассказывая историю с андрогином, Аристофан получает знание о том, что возлюбленным присуще стремление к поиску своей половины. Деление Афродит на вульгарную и возвышенную позволяет приписать любви мужчины к прекрасному юноше различные достоинства, а мужчины к женщине – только низменную страсть. Соответственно той же цели – приписывания любви необычных (если сравнивать с распространенным, народным пониманием любви) качеств: совершенствования личности, работы над собой, стремления к бессмертию, – служат рассуждения по поводу людей, разрешающихся в любви духовным бременем. Таким образом, с помощью схем герои диалога (а фактически сам Платон) получают различные знания о любви. (Ниже я буду обсуждать, почему эти знания герои диалога излагают не в форме научных знаний – это или вроде бы ни к чему не обязывающие размышления или даже вообще фантазии).

Еще один признак схем: как правило, они могут стать объектами оперирования, в том смысле что схемы имеют определенное строение, их можно анализировать, на основе одних схем можно создавать другие и т. п.

Следующая важнейшая особенность схем – они являются самостоятельными предметами, что осознается даже в этимологии этого термина (от греческого scema – наружный вид, форма). Предложим следующее рабочее определение схемы: схема – это самостоятельный предмет, выступающий одновременно как представление (или изображение) другого предмета. Понятно, что схема может быть использована и в функции модели (как известно, модель – это объект, употребляемый вместо другого объекта), но схема все же не совпадает с моделью. Для схемы существенна именно предметность: схема и сама является предметом, и представляет другой предмет; это, так сказать, предмет в квадрате. В качестве первого предмета (корня) схема выступает как источник знаний, в качестве второго (самого квадрата) позволяет переносить знания с одного предмета на другой.

Может возникнуть вопрос о том, как формируются схемы. Некоторый свет в этом отношении может пролить реконструкция формирования одной из самых первых нарративных схем – представления о душе. Нетрудно вообразить одну из возможных психологических предпосылок изобретения представления об архаической душе. Ею, например, могло быть наблюдение за птицами, вылетающими из своих гнезд и возвращающимися назад. Кстати, образ души-птицы (наряду с душой-бабочкой, душой-тенью) является достаточно распространенным в архаическом мире. Формирование представления о теле как доме (гнезде) для души – естественное следствие принятия идеи души-птицы. Труднее объяснить, как данный птичий образ души был открыт человеком. Думаю, тут сыграли свою роль несколько моментов: языковые игры-отождествления, в которых (естественно, без всяких на то оснований) человек назывался птицей, воображение, идущее вслед за речью, сновидения, где языковые отождествления могли воплотиться в реальные визуальные образы «человека-птицы», попытки слушателей понять реальность, о которой шла речь. Но вернемся к схемам Платона и Галилея. Имеет смысл рассмотреть тот способ, на основе которого Платон получает на схемах новые знания. Рассмотрим для этого историю (рассуждение) об андрогинах.

Сначала рассказывается сама история, а именно то, как Зевс рассек андрогины пополам. Затем половинки андрогинов отождествляются с мужчинами и женщинами. Наконец, влюбленным мужчинам и женщинам приписывается стремление к поиску своей половины, поскольку их происхождение от андрогинов требует воссоединения целого. Кант тотчас же уцепился бы, например, за категории «часть – целое», «любовь» и «пол», чтобы сказать, что это априорные начала, применение которых к реальным объектам (людям) и потребовало схемы андрогина. Платон рассуждал бы иначе: с помощью «правдоподобной» истории об андрогине душа вспоминает совершенную идею любви, которая создана творцом. А я, естественно, вижу в рассуждении героя диалога свое. Откуда, спрашивается, Платон извлекает новое знание о любви? Он не может изучать (созерцать) объект, ведь платонической любви в культуре еще не было, а обычное понимание любви было прямо противоположно платоновскому. Платон утверждал, что любовь – это забота о себе каждого отдельного человека, а народное понимание языком мифа гласило, что любовь от человека не зависит (она возникает, когда Эрот поражает человека своей золотой стрелой); Платон приписывает любви разумное начало, а мифология – только страсть; Платон рассматривает любовь как духовное занятие, а народ – преимущественно как телесное и т. п. Новое знание Платон получает именно из схемы, очевидно, он ее так и создает, чтобы получить такое знание. Но относит Платон это знание, предварительно модифицировав его (здесь и потребовалось отождествление), не к схеме, а к объекту рассуждения, в данном случае – к любви. Возникает вопрос: на каких основаниях, ведь объекта еще нет? Платон бы возразил: как это – нет объекта, а идея любви, ее творец создал одновременно с Космосом и душа созерцала совершенную любовь, когда пребывала в божественном мире.

Но я не Платон и должен повторить: к моменту создания «Пира» платонической любви еще не было. Следовательно, я могу предположить лишь одно: Платон полагает (современный инженер сказал бы – проектирует) новое представление о любви, и именно для этого ему нужна схема. Она задает, а не описывает новый объект; полученные на схеме знания приписываются этому объекту, конституируя его. То же самое можно утверждать и относительно других платоновских схем. Рассмотрим теперь второй пример – схемы в «Беседах» Галилея.

Исследования В. Зубова показывают, что в основании всех поисков Галилея, позволивших ему получить новые знания о движении (свободном падении тела), лежит заимствованная им у средневекового логика Николая Орема «схема треугольника скоростей». В этой схеме один катет прямоугольного треугольника изображает пройденное время, а другой – максимальную скорость, достигнутую при свободном падении тела (прямые внутри треугольника, параллельные этой максимальной скорости, – это мгновенные скорости в определенный момент времени падения). На оремовской схеме Галилей получает исходное знание, – о том, что скорость падающего тела увеличивается равномерно, – которое он кладет в основание всех дальнейших доказательств.[5] Далее, отталкиваясь от той же схемы, Галилей получает еще два знания: что все тела должны падать с одинаковой скоростью независимо от их веса и что вес тела расходуется не на поддержание движения, а только на его приращение (Аристотель утверждал обратное: что скорость падения прямо пропорциональна весу падающего тела и что для поддержания равномерного движения тела необходимо постоянно прикладывать определенную силу). Наконец, еще одно знание («Если тело, выйдя из состояния покоя, падает равномерно ускоренно, то расстояния, проходимые им за определенные промежутки времени, относятся между собой как квадраты времени») Галилей получает, доказывая геометрическим путем равенство треугольника скоростей «прямоугольнику скоростей», т. е. равенство равноускоренного движения равномерному движению со средней скоростью падения (см.: 23, с. 311–315). Рассмотрим теперь способ получения данных знаний.

Первое исходное знание Галилей получает примерно так же, как Платон. Он доказывает, что предположение о равномерном приращении скорости падающего тела является наиболее естественным и соответствующим природе изучаемого явления. Другими словами, схема треугольника скоростей построена так, чтобы приписать падающему телу данное соотношение.

По-другому получаются второе и третье знания. Почему, рассуждает Галилей (смотри нашу реконструкцию (см.: 62)), нельзя считать, что вес тела тратится на поддержание его постоянной скорости? А потому, что в этом случае нельзя объяснить ускорение тела при падении, ведь тогда пришлось бы считать, что по мере падения и вес тела постоянно возрастает. Почему все тела падают с одинаковой скоростью независимо от их веса? А потому, что в треугольник скоростей входят только два параметра – скорость тела и пройденное время, а параметр веса не входит, следовательно, от веса тела скорость не зависит. Как мы видим, новые знания здесь получаются не прямо из оремовской схемы, но в связи с ней. В данном случае схема помогает организовать соответствующие рассуждения.

Наконец, четвертое знание получается при отождествлении оремовской схемы с определенной геометрической фигурой. На основе полученного в геометрии знания о равенстве фигур далее создается новое знание о свободном падении, т. е. новое знание здесь создается в два этапа: сначала в геометрии, затем в механике, но и там и там объекты задаются с помощью схемы треугольника скоростей.

Если Платон в обосновании своих знаний апеллирует к идеям, то Галилей – к устройству природы как «написанной на языке математики». В частности, в «Диалоге о двух главнейших системах мира» Галилей пишет: «Но если человеческое понимание рассматривается интенсивно и коль скоро под интенсивностью разумеют совершенное понимание некоторых суждений, то я говорю, что человеческий интеллект действительно понимает некоторые из этих суждений совершенно и что в них он приобретает ту же степень достоверности, какую имеет сама Природа. К этим суждениям принадлежат только математические науки, а именно геометрия и арифметика, в которых божественный интеллект действительно знает бесконечное число суждений, поскольку он знает все. И что касается того немногого, что действительно понимает человеческий интеллект, то я считаю, что это знание равно божественному в его объективной достоверности, поскольку здесь человеку удается понять необходимость, выше которой не может быть никакой более высокой достоверности» (24, с. 89).

Вернемся теперь к проблеме определения специфических характеристик схем. Обратим внимание на контекст, в котором Платон вводит схему андрогина. Этот контекст явно игровой, участники диалога берутся прославлять на пирушке бога любви Эрота, а Аристофан рассказывает историю, безусловно им лично сочиненную; во всяком случае, такого нарратива в стандартном наборе греческих мифов не было. Другими словами, взаимосвязи, устанавливаемые между выдуманной историей и отношениями возлюбленных, не являются общезначимыми, они устанавливаются тут же, в реальности беседы о любви. т. е. в отличие от знака, имеющего константное общезначимое значение, схема как семиотическое образование условна, что часто и фиксируется в ее определении. Значение схемы устанавливается относительно данного контекста и реальности, в других реальностях значение схемы может быть иным. Установленное в определенном контексте значение схемы, конечно, может сохраниться и в дальнейшем употреблении, как например, это произошло со схемой метро или схемами архаической души. В этом не столь уж редком случае схема, сохраняя свою функцию схемы, превращается в знак. Однако в общем случае специфическая особенность схем состоит именно в том, что их значения устанавливаются и имеют силу в рамках определенной реальности (игровой, познавательной, коммуникативной и т. д.).

Еще одна важная характеристика схем – осознание ее предметности. Как я отмечал, и знак может превращаться (и постоянно превращается) в предмет, но этот момент обычно не осознается, поскольку знак используется прежде всего как средство деятельности. Напротив, строение схемы, ее предметные возможности интересуют создателя или пользователя схемы в первую очередь, поскольку именно они позволяют решить с помощью схемы определенную задачу, например, получить на схеме новое знание и отнести его к схематизируемому предмету.

Хотя схема, как и знак, тоже включается в деятельность (синтеза и анализа или преобразования; прекрасный пример – схема метро), все же чаще с ней работают как с реальностью. Рассмотрим один пример – использование нарративной схемы души. Она состоит из двух предметов: представления души как птички, бабочки, тени и т. п. и души как состояний человека. Возможные варианты поведения души (ушла, пришла, ушла насовсем, вышла временно, ушла на прогулку и запомнила что-то и т. п.) извлекаются из нарративной схемы не потому, что ее преобразуют, а в силу того, что это определенная реальность и человек знает, какие события в данной реальности могут происходить.

Выделенные здесь специфические особенности и характеристики схем позволяют, в частности, понять, что такое интерпретация. Интерпретация – это процесс построения схемы, позволяющий увидеть и воссоздать за определенным текстом (в тексте) интересующий интерпретатора предмет (реальность), причем тот же самый текст (и это принципиально) допускает и другие интерпретации. В этом смысле одни интерпретации всегда противостоят другим. Поскольку произведения искусств или науки даны нам в форме текстов, необходимое условие их понимания и дальнейшего использования – создание интерпретаций.

Лето — время эзотерики и психологии! ☀️

Получи книгу в подарок из специальной подборки по эзотерике и психологии. И скидку 20% на все книги Литрес

ПОЛУЧИТЬ СКИДКУ