Развитие понятий в истории квантовой механики[23]

We use cookies. Read the Privacy and Cookie Policy

Развитие понятий в истории квантовой механики[23]

История физики — не просто накопление экспериментальных открытий и наблюдений, к которым подстраивается их математическое описание; это также и история понятий. Первая предпосылка познания явлений природы — введение адекватных понятий; лишь с помощью верных понятий мы в состоянии по-настоящему знать, что мы наблюдаем. При освоении новой области очень часто требуются новые понятия, и обычно эти новые понятия появляются на свет в довольно непроясненной и неразработанной форме. Со временем они модифицируются, иногда почти совершенно вытесняются и заменяются лучшими понятиями, которые рано или поздно достигают ясности и строгой определенности. Мне хотелось бы описать этот процесс на примере трех случаев, имевших важное значение в моей работе. Прежде всего — понятие дискретного стационарного состояния, то есть, собственно говоря, фундаментальное понятие квантовой теории. Затем — понятие состояния, не обязательно дискретного или стационарного; его удалось осмыслить лишь после разработки квантовой и волновой механики. И наконец — тесно связанное с обоими предыдущими понятие элементарной частицы, которое до сих пор вообще не подвергалось достаточному обсуждению. Две первые части моего доклада будут поэтому относиться к истории, хотя в мои намерения и не входит перечисление всех наших ошибок и заблуждений за 50 лет — разве что некоторых из них, — а последняя часть будет отведена проблемам нашей современности и, стало быть, возможным новым ошибкам.

Как вы знаете, понятие дискретных стационарных состояний было введено в 1913 году Нильсом Бором. Это было центральное понятие его теории атома, замысел которой был очерчен Бором в следующей фразе: «Необходимо отдать себе отчет в том, что эта теория призвана не объяснить феномены в том смысле, в каком слово „объяснение“ понималось предшествующей физикой; она призвана связать между собою различные феномены, на первый взгляд независимые друг от друга, показав, что зависимость между ними существует. Бор говорил, что лишь после установления такой зависимости можно будет надеяться на выработку объяснения в том смысле, в каком понимала объяснение традиционная физика. Существовало прежде всего три феномена, которые надлежало привести во взаимную связь. Первым был удивительный факт стабильности атома. Можно разрушить атом химическими процессами, столкновениями, излучением или еще другими способами, однако он снова и снова возвращается к своему изначальному — нормальному — состоянию. Это был факт, не поддававшийся удовлетворительному объяснению в рамках старой физики. Это во-первых. Во-вторых, не поддавались объяснению спектральные закономерности, особенно знаменитый закон Ритца, гласивший, что частота линий в том или ином спектре может быть выражена в виде разницы между термами и что эти термы следует считать характерными признаками атомов анализируемого вещества. И в-третьих, существовали эксперименты Резерфорда, приведшие его к построению своей модели атома.

Итак, эти три группы фактов надлежало связать между собой, и, как известно, идея дискретных стационарных состояний явилась отправной точкой в поисках такой связи. Сперва неизбежно должно было казаться, что поведение атома в дискретном стационарном состоянии можно объяснить методами механики. Это было неизбежно, так как иначе терялась всякая связь с резерфордовской моделью; ведь эксперименты Резерфорда опирались на классическую механику. Кроме того, предстояло как-то связать дискретные стационарные состояния с частотами спектра. Здесь надо было применить открытый Ритцем закон, формулировавшийся теперь уже так, что частота линий спектра, помноженная на коэффициент h, равна разнице между энергиями начального и конечного состояний атома. Закон этот, однако, всего лучше поддавался объяснению, исходя из эйнштейновской идеи светового кванта, не признававшегося Бором. Бор долгое время не был готов поверить в кванты света и соответственно считал свои стационарные состояния как бы некими станциями в движении электрона, который в своем движении вокруг ядра теряет энергию вследствие излучения. Бор предполагал, что в процессе этого излучения электрон в определенных позициях, которые Бор назвал дискретными стационарными состояниями, прекращает излучением По какой-то непонятной причине электрон на этих станциях ничего не излучает, и последняя такая станция есть нормальное состояние атома. Если имеет место излучение, значит, электрон из одного своего стационарного состояния переходит в следующее по порядку.

Согласно такой картине атома, время пребывания электрона в стационарном состоянии представлялось более длительным, чем время, потребное для перехода от одного состояния к другому. Но разумеется, соотношение между этими периодами времени так и не получило отчетливого» определения.

Что можно было сказать о самом излучении? Естественно было приложить к нему общие представления максвелловской теории. С этой точки зрения причиной всех трудностей оказывалось взаимодействие между атомом и излучением. В стационарном состоянии подобное взаимодействие прекращалось, так что представлялся, по-видимому, удобный случай для применения классической механики. Однако применима ли теория Максвелла к данному излучению? Сейчас я сказал бы, что задаваться этим вопросом, собственно, не было надобности. Следовало с большей серьезностью отнестись к световым квантам. Можно было бы считать, что наблюдаемая нами интерференция света возникает вследствие каких-то дополнительных условий движения световых квантов. Смутно вспоминаю об одной моей дискуссии с Вентцелем, когда он указал мне на то, что само движение световых квантов может быть квантованным и что именно этим, видимо, и объясняется интерференция. Бор, конечно, видел вещи иначе. С какой стороны ни подходи, везде мысль наталкивалась на множество трудностей. Мне хотелось бы коснуться этих проблем подробнее.

Начать с того, что в пользу механической модели стационарных состояний говорят веские доводы. Я упомянул об экспериментах Резерфорда. Они легко позволяли привести периодические орбиты электронов внутри атома в связь с квантовыми условиями. Так, идея стационарного состояния хорошо вязалась с идеей определенного рода эллиптической траектории электрона. В своих более ранних лекциях Бор часто приводил изображения электронов, движущихся по своим траекториям вокруг ядра.

В целом ряде важных случаев эта модель отлична функционировала. Прежде всего — в случае водородного спектра. Затем — в зоммерфельдовской теории релятивистской тонкой структуры водородных линий и в так называемом эффекте Штарка, расщеплении спектральных линий в электрическом поле. Словом, имелся весьма обширный материал, из которого, похоже, вытекала правильность сопоставления квантованных электронных орбит с дискретными стационарными состояниями.

Другие доводы говорили за то, что подобная картина не может быть верной. Помню, в одной беседе Штерн рассказал мне, что в 1913 году после выхода в свет первой работы Бора он заявил одному своему другу: «Если эта бессмыслица, которую только что опубликовал Бор, верна, то я больше не хочу быть физиком».

Изложу поэтому теперь неувязки и промахи механической модели. Главная неувязка заключалась, пожалуй, в следующем. Согласно модели, определяемой квантовыми условиями, электрон описывает периодическое движение и, следовательно, с какой-то определенной частотой вращается вокруг ядра. В наблюдениях же эта частота никогда не проявлялась. Ее ни разу не удалось увидеть. Наблюдались лишь разнообразные частоты, определявшиеся перепадами энергий при переходах от одного стационарного состояния к другому. Кроме того, существовала неувязка с вырождением. Зоммерфельд ввел магнитное квантовое число. Если мы имеем магнитное поле определенной направленности, то вследствие этого квантового условия вращательный импульс атома в данном поле должен был бы оказаться равен 1, 0 или –1. Но тогда при введении другого поля с другой направленностью нужно проводить квантование относительно этого другого направления. Однако можно приложить крайне слабое поле сначала в одном, а вскоре затем в другом направлении. Это поле слишком слабо, для того чтобы перевернуть атом. Противоречие с квантовыми условиями оказывается, таким образом, неизбежным[24].

Моя первая дискуссия с Нильсом Бором, ровно 50 лет назад, вращалась вокруг этой трудности. Бор прочел в Геттингене лекцию, в которой заявил, что в постоянном электромагнитном поле можно вычислить энергию стационарных состояний в согласии с квантовыми условиями и что проведенное незадолго до того Крамерсом вычисление квадратичного эффекта Штарка содержит, по-видимому, правильные результаты, поскольку в других случаях тот же метод отлично зарекомендовал себя. С другой стороны, между постоянным электрическим полем и медленно изменяющимся электрическим полем различие очень мало.

При не слишком медленном изменении электрического ноля, например, с частотой, приближающейся к частоте орбитального вращения, мы увидели бы, что резонанс наступает, разумеется, не тогда, когда частота внешнего электрического поля совпадает с частотой вращения, а тогда, когда она совпадает с частотой, задаваемой переходами электрона с одной орбиты на другую и наблюдаемой в спектре.

В ходе подробного разбора этой проблемы Бор попробовал объяснить дело так, что в момент временного изменения электрического поля начинают действовать силы излучения и что, вероятно, поэтому невозможно вычислить результат, пользуясь методами классической физики. Но, разумеется, он сразу осознал немалую искусственность апелляции в данном пункте к силам излучения. Мы поэтому вскоре склонились к тому мнению, что какая-то ошибка скрывается в самой механической модели дискретных стационарных состояний. Все решила одна работа, еще не упоминавшаяся мною. Это была работа Паули об ионе водорода Н2+. Паули считал, что правила квантования Бора — Зоммерфельда можно применять, имея дело с хорошо определенной моделью периодических орбит, как у водорода, но никак не с моделью такой сложности, как, скажем, у атома гелия, где вокруг ядра вращаются два электрона; ибо тогда мы потонем в чудовищных математических трудностях и осложнениях задачи трех тел. С одной стороны, если бы мы имели два фиксированных центра, а именно два ядра водорода и один электрон, то движение электрона оставалось бы однозначно-периодическим движением и поддавалось расчету. В остальном эта модель уже достаточно сложна; ее можно использовать поэтому для проверки приложимости старых правил к подобному промежуточному случаю. Работая с этой моделью, Паули установил, что расчеты действительно не приводят к истинной величине энергии для Н2+. В результате возникли сомнения в применимости классической механики для вычисления дискретных стационарных состояний, и внимание все прочнее приковывалось к переходам между ними. Стало ясно, что для полного объяснения явлений недостаточно только вычислить энергию, нужно было вычислить вероятности переходов. Из работы Эйнштейна 1918 года мы знали, что вероятности переходов определены как величины, зависящие от двух состояний, начального и конечного. В своем принципе соответствия Бор установил, что эти вероятности переходов: можно оценить интенсивностями высших гармонических составляющих в Фурье-разложении электронной орбиты. Его идея сводилась к тому, что каждая линия соответствует одной Фурье-компоненте в разложении движения электрона; из квадрата этой амплитуды можно вычислить интенсивность. Эта интенсивность, естественно, не стоит ни в какой непосредственной связи с эйнштейновской вероятностью перехода, но определенное соотношение между ними все же существует, так что интенсивность позволяет приблизительно вычислить эйнштейновские величины. Итак, внимание все более смещалось с энергии стационарных состояний к вероятности перехода из одного стационарного состояния в другое, и Крамере первым начал серьезно исследовать дисперсию атома, связывая поведение модели Бора под воздействием излучения с эйнштейновскими коэффициентами.

Составляя дисперсионную формулу, Крамере руководствовался той идеей, что составляющим Фурье-разложения соответствуют виртуальные гармонические осцилляторы в атоме. Потом Крамере обсудил со мной те явления рассеивания, при которых частота рассеиваемого света отличается от частоты падающего света. Квант рассеиваемого света здесь отличается от кванта падающего света потому, что в момент рассеяния атом переходит из одного состояния в другое. Подобные явления были только что открыты в линейчатых спектрах Раманом. При попытке сформулировать выражение для дисперсии в этих случаях приходилось говорить не только об Эйнштейновых вероятностях перехода, но еще и об амплитудах перехода; нужно было приписать этим амплитудам определенные фазы, помножить между собою две амплитуды — скажем, амплитуду, ведущую от состояния m к состоянию n, на амплитуду, ведущую от состояния n к состоянию k, — а потом суммировать n-ное число промежуточных состояний; только таким путем мы пришли к осмысленным формулам для дисперсии.

Вы видите, таким образом, что сосредоточение внимания не на энергии стационарных состояний, а на вероятности перехода и дисперсии в конце концов привело к новому способу рассмотрения; фактически только что упомянутые мною суммы произведений, приведенные Крамерсом и мною в нашей работе по дисперсии, были уже почти готовыми матричными произведениями. Отсюда требовался уже лишь очень маленький шаг, чтобы сказать: давайте-ка отбросим всю эту идею электронных орбит и просто заменим Фурье-компоненты электронных орбит соответствующими матричными элементами. Должен сознаться, что я тогда не знал, что такое матрица, и не знал правил матричного умножения. Но подобные операции оказалось возможным усвоить из физики, а позднее выяснилось, что речь идет о хорошо известном у математиков методе.

Как видите, представление об электронной орбите, связанное с идеей дискретного стационарного состояния, было по ходу дела практически отброшено. Понятие дискретных стационарных состояний, однако, осталось жить. Понятие это было необходимым. Оно имело свою основу в данных наблюдений. Наоборот, электронную орбиту не удалось согласовать с наблюдениями, поэтому от нее отказались, и от нее остались только матрицы для координат.

Следовало бы, пожалуй, упомянуть о том, что еще до 1925 года, когда это произошло, Борн в своем геттингенском семинаре 1924 года подчеркнул, что неправильно списывать трудности квантовой теории только на счет взаимодействия между излучением и механической системой. Он стоял за то, чтобы пересмотреть механику и заменить ее своеобразной квантовой механикой, создав тем самым базу для понимания атомных явлений. А потом было сформулировано матричное умножение. Борн и Йордан, как и независимо от них Дирак, открыли, что те дополнительные условия, которые в моей первой работе были присоединены к матричному умножению, могут быть записаны в форме изящного уравнения.

pq — qp = h/2?i

Им удалось тем самым создать простую математическую схему квантовой механики.

Но и после этого нельзя было сказать, что же, собственно говоря, такое это дискретное стационарное состояние; и тут я перехожу ко второй части моего доклада — к понятию «состояние». В 1925 году мы располагали методом для расчета дискретных значений энергии атома. Существовал также, по меньшей мере в принципе, и метод для расчета вероятностей перехода. Но в чем заключалось это состояние атома? Как его можно было описать? Описание не могло опереться на картину электронной орбиты. До сих пор стационарное состояние поддавалось описанию только через указание энергии и вероятности перехода на другой энергетический уровень; но картины атома не существовало. Более того, было ясно, что в определенных случаях существуют и нестационарные состояния. Простейшим примером нестационарного состояния служил электрон, движущийся через камеру Вильсона. Вопрос заключался, по существу, в том, как трактовать подобное состояние, временами встречающееся в природе. Поддается ли такой феномен, как путь электрона через камеру с водяным туманом, описанию на абстрактном языке матричной механики?

К счастью, Шрёдингером была разработана в те годы волновая механика. А в волновой механике все выглядело совершенно иначе. Она позволяла определить волновую функцию для дискретного стационарного состояния. Какое-то время Шрёдингер думал, что дискретное стационарное состояние может быть наглядно представлено следующим образом. Мы имеем трехмерную стоячую волну — ее можно изобразить как произведение известной пространственной функции и периодической временной функции ei?t, — и абсолютный квадрат этой волновой функции означает электрическую плотность. Частота этой стоячей волны сопоставима с термом в спектральном законе. В этом и заключался решающий новый момент шредингеровской идеи. Эти термы не обязательно должны были означать энергетические уровни; они означали просто частоты. Так Шрёдингер пришел к новой «классической» картине дискретных стационарных состояний, которую он вначале считал действительно пригодной для применения в атомной теории. Но потом очень скоро выяснилось, что и это в свою очередь невозможно. В Копенгагене летом 1926 года дело дошло до жарких споров. Шрёдингер надеялся, что волновая картина атома — с постоянным, описываемым волновой функцией, перераспределением материи вокруг его ядра — способна заменить старые модели квантовой теории. Дискуссия с Бором привела, однако, к тому заключению, что подобная картина непригодна даже для объяснения закона Планка. Крайне важным для истолкования явилось установление того, что собственные значения уравнения Шрёдингера — не просто частоты, они — действительно энергии.

Отсюда было естественно вернуться к идее квантовых скачков из одного стационарного состояния в другое, и Шрёдингер был крайне недоволен таким исходом наших споров. Но даже с учетом всего этого и после признания квантовых скачков мы все еще не знали, что может означать слово «состояние». Естественно, можно было попытаться — что довольно скоро и было сделано — установить, можно ли описать траекторию электрона в камере Вильсона с помощью шредингеровской волновой механики. Обнаружилось, что это невозможно. Начальное состояние электрона могло быть представлено в виде волнового пакета. Этот волновой пакет приходил затем в движение, и таким путем мы получали нечто вроде траектории электрона в камере Вильсона. Трудность, однако, заключалась в том, что этот волновой пакет должен был становиться все больше и больше и при достаточной продолжительности движения достигнуть диаметра в один сантиметр или более. Эксперименты говорили явно о другом, так что эту картину тоже пришлось отбросить. В такой ситуации было, естественно, много трудных дискуссий, ибо все мы были убеждены, что математическая схема квантовой, или волновой, механики уже приняла окончательный вид. Она не допускала изменений, и нам предстояло выполнять все свои вычисления по ее схеме. А с другой стороны, никто не знал, как представить по этой схеме такой простой случай, как прохождение электрона в камере Вильсона. Борн сделал первый шаг, рассчитав с помощью теории Шрёдингера вероятность процессов столкновения; он предложил считать, что квадрат волновой функции — это не плотность электрического заряда, как думал Шрёдингер, а показатель вероятности обнаружения электрона в данной точке.

Наконец, явились Дирак и Йордан со своей теорией преобразования. По их схеме можно было преобразовать ?(q), например, в ?(р), и само собой напрашивалось предположение, что квадрат [?(р)]2 выражает вероятность обнаружения электрона с импульсом р. Так мы все ближе подходили к представлению, что квадрат волновой функции, которая, надо отметить, являлась волновой функцией не в трехмерном, а в конфигурационном пространстве, означал вероятность того или иного явления. Вооруженные этим новым знанием, мы снова обратились к электрону в камере Вильсона. Не могло ли случиться, что мы неверно поставили вопрос о нем? Я вспомнил, что Эйнштейн говорил мне: «Что поддается наблюдению, зависит всегда от теории». А это, по существу, означало, что нам не следовало спрашивать: «Как представить траекторию движения электрона в камере Вильсона?» Вместо этого мы должны были спросить: «Не обстоит ли дело так, что в природе имеют место лишь ситуации, поддающиеся представлению либо в квантовой механике, либо в волновой механике?»

Поставив вопрос таким образом, я сразу осознал то обстоятельство, что траектория движения электрона в камере с водяным туманом не является бесконечно тонкой линией со строго определенными положениями и скоростями движения; в действительности траектория его движения в камере — это ряд точек, не очень точно отмеченных капельками воды, и скорости здесь определены тоже не так уж хорошо. Я поставил тогда простой вопрос: «Если бы мы захотели знать как скорость, так и положение волнового пакета, то какой максимальной точности мы могли бы достичь, исходя из того принципа, что в природе встречаются лишь ситуации, поддающиеся представлению в математической схеме квантовой механики?» Это была несложная математическая задача, и результатом явился принцип неопределенности, похоже, отвечавший экспериментальной ситуации. Итак, мы наконец узнали, как описать феномен, подобный движению электрона, однако заплатили за это очень дорогой ценой, а именно: наше истолкование означало, что волновой пакет, представляющий электрон, изменяется в каждой точке наблюдения, то есть около каждой капельки воды в камере Вильсона. В каждом таком пункте мы получаем новую информацию о состоянии электрона и потому должны заменять исходный волновой пакет новым, соответствующим этой новой информации.

Такое представление электрона не позволяет приписать электрону на его траектории никаких определенных характеристик, как-то: координат, импульсов и т. д. Можно говорить лишь о том, с какой вероятностью в практических условиях эксперимента мы встретим электрон в определенной точке или установим определенную величину его скорости. Так мы приходим к определению состояния электрона, которое намного абстрактнее, чем первоначальная картина его траектории. Математически мы описываем его вектором в Гильбертовом пространстве, и этот вектор показывает вероятность результатов всех экспериментов, какие можно провести над электроном в данном состоянии. Состояние может измениться при получении любой новой информации.

Такое определение состояния частицы вело к очень большой перемене в описании природных явлений, и я спросил себя, имеем ли мы право говорить, что Эйнштейн, Планк, фон Лауэ и Шрёдингер, которые не проявляли готовности принять такое определение, просто находятся в плену у предрассудков. Слово «предрассудок» в данной связи слишком негативно и не отражает сути дела. Верно, конечно, что Эйнштейн, например, твердо верил в возможность объективно описать состояние атома в точно таком же смысле, как в прежней физике. Но было поистине крайне трудно отбросить это представление, ибо весь наш язык связан с таким пониманием объективности. Все слова, применяемые нами в физике для описания экспериментов, — например, «измерение», «положение», «энергия», «температура» и так далее — опираются поэтому на классическую физику и ее представление об объективности. Тезис, что подобное объективное описание в мире атомов невозможно, что мы можем определять здесь состояние только через вектор в пространстве Гильберта[25], — подобный тезис был действительно очень революционным; и, думаю, поистине не так уж удивительно, что многие физики того времени просто не были готовы его принять.

Я обсуждал эту проблему с Эйнштейном в 1954 году, за несколько месяцев до его смерти. Я провел с Эйнштейном очень приятные послеполуденные часы, и все же, когда дело коснулось интерпретации квантовой механики, ни я не мог убедить его, ни он — меня. Он все повторял: «Хорошо, я согласен, что каждый эксперимент, результаты которого поддаются расчету с помощью квантовой механики, кончится так, как вы говорите; тем не менее подобная схема не может служить окончательным описанием природы».

Перейдем теперь к третьему понятию, которое я хотел бы обсудить, к понятию элементарной частицы. До 1928 года каждый физик знал, что надо понимать под элементарной частицей. Ближайшими примерами были электрон и протон, и нам в то время очень хотелось представлять их просто как точечные заряды, бесконечно малые, определяемые только их зарядом и массой. Мы нехотя допускали, что у них должен быть какой-то радиус, поскольку их электромагнитная энергия должна быть конечной. Идея, что подобные объекты должны обладать такими характеристиками, как радиус, нам не очень нравилась, но мы утешали себя тем, что частицы казались по крайней мере совершенно симметричными, как шар. Открытие спина электронов, правда, ощутимо изменила эту картину. Электрон оказался несимметричным. Он имел ось, и это открытие наводило на мысль, что элементарные частицы, пожалуй, имеют более чем одно свойство и что они непросты, не так элементарны, как мы думали раньше. Ситуация еще раз полностью изменилась в 1928 году, когда Дирак разработал релятивистскую теорию электрона и открыл позитрон[26]. Ни одна новая идея не может быть с самого начала совершенно ясной. Дирак вначале думал, что «дыры» с отрицательной энергией в его теории можно отождествить с протонами; позже выяснилось, однако, что по массе они должны быть равны электрону; в конце концов они были обнаружены экспериментально и получили название позитронов. На мой взгляд, это открытие антиматерии есть, пожалуй, важнейший сдвиг из всех важных сдвигов в физике нашего столетия. Исключительное значение этого открытия объясняется тем, что оно изменило все наше представление о материи. Мне хотелось бы в последней части своего доклада пояснить это чуть более подробно.

Сперва Дирак предположил, что подобные частицы возникают в процессе рождения пары. Квант света может перевести виртуальный электрон с одного из отрицательных энергетических состояний в вакууме на более высокий энергетический уровень, и это значит, что квант света образовал пару электрон — позитрон. Но вместе с тем это означало, что число частиц — уже не настоящее квантовое число, что закон сохранения не распространяется на число частиц. В согласии с новой идеей Дирака можно было сказать, например, что атом водорода не обязательно состоит из одного протона и одного электрона, в какие-то моменты он может состоять из одного протона, двух электронов и одного позитрона. И действительно, с учетом более тонких деталей квантовой электродинамики такая возможность играет определенную роль.

В каждом случае взаимодействия между излучением и электроном возможны такие явления, как образование пар. Но тогда естественно было предположить, что подобные процессы могут происходить в гораздо более обширных областях физики. С 1932 года мы знали, что в ядре нет электронов, ядро состоит из протонов и нейтронов. Но потом Паули высказал предположение, что бета-распад поддается описанию как процесс возникновения одного электрона и одного нейтрино. Эта возможность была сформулирована Ферми в его теории бета-распада. Вы видите, таким образом, что уже тогда закон сохранения числа элементарных частиц был полностью отброшен. Стало ясно, что имеют место процессы образования частиц из энергии. Возможность подобных процессов была, разумеется, предсказана уже в специальной теории относительности, согласно которой энергия превращается в материю. Но их реальность впервые обнаружилась благодаря открытию Дираком антиматерии и образования пар.

Ферми опубликовал свою теорию бета-распада, если не ошибаюсь, в 1934 году. Спустя несколько лет в связи с космическим излучением мы поставили вопрос: «Что произойдет, если столкнутся две элементарные частицы очень высоких энергий?» Напрашивался ответ, что в таком случае вовсе не исключено возникновение большого числа частиц. И в самом деле, после открытия Дирака гипотеза множественного образования частиц при высокоэнергетических столкновениях была уже вполне естественным допущением. Экспериментально она была подтверждена лишь 15 лет спустя, когда стали исследовать явления очень высоких энергий на больших ускорителях и появилась возможность наблюдать подобные процессы. Когда же стало известно, что при высокоэнергетических столкновениях можно получить произвольное число частиц при том единственном условии, чтобы начальная симметрия была идентична конечной симметрии, то пришлось допустить также, что каждая частица есть, по существу, сложная система, коль скоро можно, не отступая от истины, считать любую частицу виртуально состоящей из произвольного числа других частиц. При всем том мы, разумеется, согласимся, что будет разумным приближением к истине считать ?-мезон состоящим лишь из одного нуклона и одного антинуклона и что нет необходимости принимать во внимание составы высшего порядка. Опять же это лишь приближение, и если быть точным, то надо сказать, что в ?-мезоне мы имеем дело с определенным множеством конфигураций нескольких частиц вплоть до сколь угодно большого числа частиц, лишь бы совокупная симметрия совпадала с симметрией ?-мезона. Одним из сенсационнейших последствий открытия Дирака явилось, таким образом, полное крушение старого понятия элементарной частицы. Элементарная частица оказалась уже не элементарной. Это фактически сложная система, точнее, сложная система многих тел, и она обнаруживает в себе все те структурные взаимосвязи, какие характерны для молекулы или любого другого объекта подобного рода.

Теория Дирака имела еще одно важное следствие. В старой теории, скажем в нерелятивистской квантовой теории, основное состояние было крайне простым состоянием. Оно было не чем иным, как вакуумом, пустым миром, и потому обладало максимальной симметрией. В теории Дирака основное состояние было иного рода. Это был объект, заполненный недоступными наблюдению частицами отрицательной энергии. Вдобавок при допущении процесса образования пар приходилось считаться с тем, что основное состояние должно заключать в себе, по всей видимости, бесконечное число виртуальных пар позитронов и электронов, то есть частиц и античастиц; сразу видно, что основное состояние есть сложная динамическая система. Она представляет собой одно из собственных решений, определяемых основополагающим законом природы. Далее, если так понимать основное состояние, то становится очевидным, что оно не обязательно должно быть симметричным относительно группы основополагающего закона. По сути дела, наиболее естественным объяснением электродинамики представляется то, что основополагающий закон природы полностью инвариантен относительно группы изоспина, а основное состояние — нет. В соответствии с этим из допущения, что основное состояние при вращениях в изопространстве[27] является вырожденным, вытекает, по теореме Голдстоуна, существование сил дальнодействия или частиц с нулевой массой покоя. Вероятно, кулоновское взаимодействие и фотоны следует интерпретировать в этом смысле.

Наконец, в своей бакеровской лекции 1941 года Дирак высказал — как следствие из своей теории «дырок» — ту мысль, что в релятивистской теории поля с взаимодействием следует использовать пространство Гильберта с индефинитной метрикой. До сих пор идет спор о том, действительно ли необходимо такое расширение общепринятой квантовой теории. Но после многих дискуссий на протяжении последних десятилетий не приходится сомневаться, что непротиворечивое построение теорий с индефинитной метрикой возможно и что их разумная интерпретация в рамках физической науки вполне мыслима.

Итак, конечным результатом на сегодня представляется вывод, что предложенная Дираком теория электрона изменила весь облик атомной физики. После отказа от старого понятия элементарной частицы объекты, раньше называвшиеся элементарными частицами, должны сегодня рассматриваться как сложные многоэлементные системы, и рано или поздно мы будем рассчитывать их с помощью основополагающего закона природы, так же как мы рассчитываем стационарные состояния сложных молекул по законам квантовой или волновой механики. Мы узнали, что энергия становится материей, принимая форму элементарных частиц. Состояния, носившие название элементарных частиц, так же сложны, как состояния атомов и молекул. Или — в парадоксальной формулировке — каждая частица состоит из всех остальных частиц. Поэтому мы не можем надеяться, что физика элементарных частиц когда-либо сможет стать проще, чем квантовая химия. Это важная деталь, потому что еще и поныне многие физики надеются, что нам удастся в один прекрасный день отыскать какой-то очень простой путь к физике элементарных частиц — как в старые времена водородного спектра. На мой взгляд, это невозможно.

В заключение я хотел бы еще раз сказать несколько слов о том, что у нас было названо «предрассудками». Вы можете сказать, что наша вера в элементарные частицы была предрассудком. Но я все же считал бы, что это чересчур негативное суждение, поскольку весь язык, применяемый нами в атомной физике двух последних столетий, прямо или косвенно опирается на понятие элементарной частицы. Мы всегда спрашивали: «Из чего состоит такой-то объект и какова геометрическая или динамическая конфигурация меньших частиц в этом более крупном объекте?» По существу, мы каждый раз возвращались к этой демокритовской философии; думаю, однако, что Дирак уже доказал нам ложность такой постановки вопроса. При всем том крайне трудно удержаться от вопросов, заложенных в самом нашем языке. Понятно поэтому, что еще и сегодня многие физики-экспериментаторы — а то и некоторые теоретики — все еще заняты поисками «настоящих» элементарных частиц. Они надеются, например, что кварки, если таковые существуют, возьмут на себя роль искомых частиц.

Думаю, что это заблуждение. Заблуждение потому, что, даже если кварки окажутся реальностью, мы не сможем сказать, что протон состоит из трех кварков. Нам придется говорить, что иногда он, пожалуй, и состоит из трех кварков, но в другие моменты он может состоять из четырех кварков и одного антикварка или из пяти кварков и двух антикварков и т. д. Все эти конфигурации будут содержаться в протоне, и каждый кварк опять же будет состоять из кварка и антикварка и т. д. Нет никакого способа уйти от этой характерной ситуации; но поскольку направленность наших вопросов определяется старыми понятиями, крайне трудно удержаться от их постановки. Очень многие физики до сих пор ищут кварки и будут, наверное, искать их и впредь. В последнее десятилетие существует очень сильная предрасположенность в пользу кварков, так что, мне думается, если бы сии были, то их бы уже открыли. Но тут решать физикам-экспериментаторам.

Спрашивается, чем же тогда заменить понятие фундаментальной частицы. Полагаю, что нам следовало бы заменить его понятием фундаментальной симметрии. Фундаментальными симметриями определяется основополагающий закон, обусловливающий спектр элементарных частиц. Не буду здесь входить в подробное обсуждение этих симметрии. Тщательный анализ наблюдений дает мне основание заключить, что, помимо Лоренцовой группы, подлинными симметриями являются также SU2, принцип масштабной инвариантности и дискретные преобразования Р. С. Т.; но я не стал бы причислять к фундаментальным симметриям SU3 или более высокие симметрии этого рода, поскольку они могут возникать благодаря динамике системы в качестве приближенных симметрии[28].

Но это опять же вопрос, который должны решать экспериментаторы. Я хотел единственно сказать, что нам следовало бы отыскивать не фундаментальные частицы, а фундаментальные симметрии. И если мы действительно совершим этот переворот в понятиях, подготовленный Дираком и его открытием антиматерии, то, думаю, нам уже не понадобится еще одной научной революции, чтобы понять элементарные — или, вернее, «неэлементарные» — частицы. Мы должны сначала научиться обращению с этим новым и, к сожалению, очень абстрактным понятием — «фундаментальные симметрии»; но это дело наживное.