ГЛАВА 3 МИР ФИЗИКИ

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА 3

МИР ФИЗИКИ

Самой прогрессирующей наукой в наши дни, причем такой, которая, по-видимому, бросает больше всего света на структуру мира, является физика. Эта наука по-настоящему начинается с Галилея, но чтобы должным образом оценить его деятельность, следует коротко рассмотреть то, что думали до него.

Схоласты, чьи взгляды в основном были заимствованы у Аристотеля, думали, что небесные и земные тела подчиняются разным законам и что это же различие имеет место в отношении живой и мертвой материи. Они считали, что мертвая материя, во всяком случае в земной сфере, предоставленная самой себе, постепенно потеряет всякое движение, которое она могла иметь. Все живое, согласно Аристотелю, имеет своего рода душу. Растительная душа, которой обладают все растения и животные, делает возможным только процесс роста; животная душа является причиной движений. Имеются четыре элемента земля, вода, воздух и огонь, — из которых земля и вода являются тяжелыми, а воздух и огонь — легкими. Земля и вода имеют естественное движение вниз, а воздух и огонь — столь же естественное движение вверх. В самых высоких сферах неба имеется также пятый элемент, некий род очищенного огня. Не было мысли об одной группе законов для всех видов материи и не существовало науки об изменениях в движении тел.

Галилей и — в меньшей степени — Декарт ввели основные понятия и принципы, которые вполне удовлетворяли физику до настоящего столетия. Казалось, что законы движения одни и те же для всех видов мертвой материи, а, возможно, также и для живой. Декарт считал, что животные являются автоматами и что их движения могут быть теоретически вычислены с помощью тех же принципов, которые управляют падающим куском свинца. Среди физиков превалировал взгляд, во всяком случае в качестве рабочей гипотезы, что вся материя гомогенна и что единственно важным с научной точки зрения ее свойством является положение в пространстве. По теологическим основаниям человеческие тела часто (но не всегда) освобождались от жесткого детерминизма, к которому, по-видимому, вели физические законы. Здесь автор под «жестким детерминизмом имеет в виду механистический детерминизм, к которому вели не определенные законы классической физики, а одностороннее, метафизическое их истолкование с позиций механистического материализма. За этим возможным исключением научная ортодоксия сочла возможным согласиться со взглядом Лапласа, что вычислитель, обладающий достаточными математическими способностями и данными о положении, скорости и массе каждой частицы во вселенной в определенный момент времени, может вычислить все прошлое и будущее физического мира. Если, как некоторые думали, иногда и случаются чудеса, то они находятся вне сферы науки, поскольку они по своей природе не подчинены закону. На этом основании даже тот, кто верил в чудеса, не согрешал против научной строгости в своих вычислениях.

Галилей ввел два принципа, которые больше всего содействовали возможности математической физики: закон инерции и закон параллелограмма. Кое-что следует сказать о каждом из них.

Закон инерции, известный как первый ньютоновский закон движения, утверждает в формулировке Ньютона, что:

«Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние».

И. Ньютон. «Материалистические начала натуральной философии». Перевод с латинского А. Н. Крылова.

Понятие «силы», играющее весьма большую роль в произведениях Галилея и Ньютона, оказалось излишним и было устранено из классической динамики в течение XIX века. Это привело к необходимости по-новому сформулировать закон инерции. Но рассмотрим сначала этот закон в его отношении ко взглядам, преобладавшим до Галилея.

Всякое движение на земле имеет тенденцию ослабевать и, наконец, прекращаться. Шары, катящиеся даже по самой гладкой поверхности, через некоторое время останавливаются: камень, брошенный на лед, не скользит по нему без конца. Небесные тела, правда, движутся по своим орбитам без какой-либо заметной потери скорости, но их движения не являются прямолинейными. Согласно закону инерции, замедление камня на льду и криволинейные орбиты планет объясняются не чем-то, присущим их собственной природе, а действием окружающей обстановки.

Этот принцип привел к возможности рассматривать физический мир как замкнутую систему. Вскоре оказалось, что в каждой динамически независимой системе — например, такой, как Солнце и планеты, — количество движения или момент движения в каждом направлении с очень большим приближением оказывается постоянным. Таким образом, вселенная, приведенная однажды в движение, будет оставаться в движении всегда, если ее не остановит чудо. Аристотель думал, что планеты нуждаются в богах, которые двигали бы их по их орбитам, и что движения на земле могли самостоятельно начаться у животных. Движения в материи, согласно этому взгляду, могут быть объяснены только из нематериальных причин. Закон инерции изменил это воззрение и сделал возможным исчисление движений материи посредством одних только законов динамики.

Технически принцип инерции означал, что причинные законы физики должны быть установлены с помощью ускорения, то есть изменения скорости по величине, направлению или в обоих отношениях. Равномерное движение по кругу, которое древние и схоластики рассматривали как «естественное» для небесных тел, перестало быть таковым, поскольку оно требовало непрерывного изменения в направлении движения. Отклонение от прямой линии требовало причины, которая и была найдена в ньютоновском законе тяготения.

Поскольку ускорение есть второй дифференциал от положения по времени, то из закона инерции следовало, что причинные законы динамики должны быть дифференциальными уравнениями второго порядка, хотя эта форма выражения и не могла иметь места, пока Ньютон и Лейбниц не изобрели исчисления бесконечно малых. Точнее было бы сказать, ускорение равно второй производной от пути по времени. Это следствие закона инерции прошло неизменным и устойчивым через все современные изменения теоретической физики. Основополагающее значение ускорения является, вероятно, самым незыблемым и самым блистательным из всех открытий Галилея.

Закон параллелограмма в формулировке Ньютона касается того, что происходит с телом, когда на него действуют сразу две силы. Он говорит, что если на тело действуют две силы, одна из которых определяется по своему направлению и величине отрезком АВ, а другая — отрезком ВС, то результат их совместного действия определяется отрезком АС. Это, грубо говоря, то же самое, что сказать, что если две силы действуют одновременно, то результат будет тот же, как если бы они действовали последовательно во времени. На техническом языке это значит, что уравнения здесь линейные, что весьма облегчает математическое вычисление.

Закон параллелограмма может быть истолкован как утверждающий взаимную независимость различных причин, действующих одновременно. Возьмем, например, проблему летящего снаряда, в которой Галилей был профессионально заинтересован. Если бы Земля не притягивала снаряд, то, в соответствии с законом инерции, он продолжал бы лететь горизонтально с постоянной скоростью (если пренебречь сопротивлением воздуха). Если бы снаряд не имел начальной скорости, он падал бы вертикально с равномерным ускорением. Для того, чтобы определить, где он окажется фактически, скажем, через секунду, мы можем предположить, что он сначала летит горизонтально в течение секунды с постоянной скоростью, а затем, остановившись, падает вертикально в течение секунды с равномерным ускорением.

Когда силы, действующие на тело, непостоянны, этот принцип не позволяет нам рассматривать каждую силу отдельно в течение какого-то конечного отрезка времени, но если этот конечный отрезок времени мал, то результат рассмотрения каждой силы отдельно будет приблизительно правильным, и чем короче отрезок времени, тем он правильнее, приближаясь к абсолютной правильности как к пределу.

Ясно, что закон этот чисто эмпирический; не существует никакого математического основания для его истинности. Он должен быть признан, поскольку за него говорит очевидность и ничего больше. В квантовой механике он не признается, и существуют явления, которые, по-видимому, указывают на то, что он неверен в области атомных явлений. Но в физике макромира он остается истинным, и в классической физике он играет очень большую роль.

Со времени Ньютона и до конца XIX века прогресс физики не дал никаких существенно новых принципов. Первой революционной новостью было введение Планком квантовой постоянной h в 1900 году. Но прежде чем рассматривать квантовую теорию, которая имеет значение главным образом в связи со структурой и поведением атомов, нужно сказать несколько слов об относительности, которая представляет собой более умеренный отход от ньютоновских принципов чем квантовая теория.

Ньютон думал, что, кроме материи, существует абсолютное пространство и абсолютное время. Это значит, что существует трехмерное многообразие точек и одномерное многообразие моментов времени и что существует тернарное отношение, включающее материю, пространство и время, именно отношение «нахождения» точки а какой-то момент. В этом Ньютон соглашался с Демокритом и другими атомистами древности, которые верили в «атомы и пустоту». Другие философы думали, что пустое пространство есть ничто и что материя должна быть везде. Таково было мнение Декарта, а также Лейбница, с которым Ньютон (через доктора Кларка как своего доверенного) имел спор по этому вопросу.

Что бы физики ни думали о предмете философии, взгляд Ньютона касался аппарата динамики и имел, как он указывал, эмпирические основания для его предпочтения. Если вода в ведре вращается, она поднимается по стенкам ведра, а если вращается ведро, в то время как вода находится в покое, поверхность воды остается плоской. Мы можем поэтому различать вращение воды и вращение ведра, что мы не могли бы делать, если бы вращение было относительным. Со времени Ньютона были собраны и другие аргументы. Маятник Фуко, сплющивание Земли у полюсов и тот факт, что тела в низких широтах весят меньше, чем в высоких, должны были привести нас как будто к выводу, что Земля вращается, даже если бы небо было всегда покрыто облаками; действительно, основываясь на ньютоновских принципах, мы можем сказать, что вращение Земли, а не вращение неба является причиной смены дня и ночи и восхода и захода звезд. Но если пространство только относительно, то и разница между утверждениями «Земля вращается» и «небо вращается» только в словах: оба эти утверждения представляют собой лишь способы описания одного и того же явления.

Эйнштейн показал, как можно избежать заключения Ньютона и сделать пространственно-временное положение чисто относительным. Но его теория относительности сделала гораздо больше. В специальной теории относительности он показал, что между двумя событиями имеется соотношение, которое может быть названо «интервалом», который может быть разделен многими различными способами на то, что мы должны рассматривать как пространственное расстояние, и вместе с тем на то, что мы должны рассматривать как промежуток времени. Все эти различные способы одинаково законны; не существует способа, который был бы более «правильным», чем другие. Выбор между ними есть дело чистого соглашения, как выбор между метрической системой и системой футов и дюймов.

Из этого следует, что имеющее основополагающее значение физическое многообразие не может состоять из устойчивых частиц, находящихся в движении, но должно представлять собой четырехмерное многообразие «событий». Должны быть три координаты, чтобы фиксировать положение события в пространстве, и еще одна — чтобы фиксировать его положение во времени, но изменение координат может изменить временную координату так же, как и пространственные координаты — и не только, как было прежде, посредством постоянной величины, одной и той же для всех событий, как это, например, происходит, когда хронология переводится с магометанского летоисчисления на христианское.

Общая теория относительности, опубликованная в 1915 году, через десять лет после специальной, была первоначально геометрической теорией тяготения. Эта часть теории может рассматриваться как твердо установленная. Но она имеет также много и умозрительных черт. Она содержит в своих уравнениях то, что называется «космической постоянной», которая определяет размер вселенной в любое время. Считается, что эта часть теории, как уже упоминалось, показывает, что вселенная или непрерывно увеличивается, или непрерывно уменьшается. Считается, что смещение к красному концу спектра удаленных туманностей показывает, что они удаляются от нас со скоростью, пропорциональной их расстоянию от нас. Это ведет к заключению, что вселенная расширяется, а не сжимается. Согласно этой теории, это явление нужно понимать в том смысле, что вселенная конечна, но безгранична, как в трехмерном пространстве поверхность сферы. Все это подразумевает неевклидову геометрию и может показаться загадочным тем, чье воображение связано с геометрией Евклида.

Общая теория относительности влечет за собой два вида отклонений от евклидова пространства. С одной стороны, существуют отклонения малого масштаба (где, например, солнечная система рассматривается как «малый масштаб») и, с другой стороны, отклонения большого масштаба (вселенной в целом). Отклонения малого масштаба происходят в соседстве с материей и объясняются тяготением. Их можно сравнить с холмами и долинами на поверхности Земли. Отклонения большого масштаба можно сравнить с тем фактом, что Земля круглая, а не плоская. Если вы отправляетесь от любого пункта земной поверхности и двигаетесь, насколько возможно, прямо, то вы в конце концов вернетесь к пункту, от которого вы отправились. Таким образом, считают, что самая прямая из всех линий, возможных во вселенной, в конце концов возвратится к своему началу. Аналогия с поверхностью Земли не является точной потому, что поверхность Земли имеет два измерения и имеет области вне себя, тогда как сферическое пространство вселенной имеет три измерения и ничего не имеет за своими пределами. Настоящий размер вселенной измеряется числом между 6000 и 60 000 миллионов световых лет, но размеры вселенной удваиваются приблизительно через каждые 1300 миллионов лет. Во всем этом, однако, вполне можно сомневаться.

Согласно профессору Е. А. Милну, в теории Эйнштейна еще гораздо больше сомнительного. Профессор Милн считает, что нет никакой необходимости рассматривать пространство как неевклидово и что та геометрия, которую мы признаем, может быть принята исключительно по мотивам ее удобства. Различие между разными геометриями, согласно Милну, есть различие в языке, а не в том, что описывается. Человеку со стороны трудно иметь определенное мнение о том, о чем спорят физики, но я склонен думать, что мнение профессора Милна очень похоже на правду.

В противоположность теории относительности квантовая теория имеет дело главным образом с наименьшим из того, о чем возможно знание, именно с атомами и их структурами. В течение XIX столетия атомическое строение материи было твердо установлено и было обнаружено, что различные элементы могут быть поставлены в ряд, начинающийся с водорода и кончающийся ураном. Место элемента в этом ряду называется его «атомным номером». Водород имеет атомный номер 1, а уран — 92. В настоящее время в этом ряду имеется два пробела, так что количество известных элементов равно 90, а не 92; но эти пробелы могут быть заполнены в любой момент, как это уже случилось с ранее возникавшими пробелами. В настоящее время число известных элементов увеличилось до 102. В общем (но не всегда) атомный номер увеличивается с атомным весом. До Резерфорда не существовало удовлетворительной теории структуры атомов и их физических свойств, в соответствии с которыми они располагались в ряд. Ряд определялся только по их химическим свойствам, и не существовало физического объяснения этих химических свойств.

Атом Резерфорда-Бора, как он называется по имени двух создавших его модель ученых, отличался крайней простотой, теперь, к сожалению, утерянной. Но хотя он и стал только образным приближением к истине, им все-таки можно пользоваться, когда не требуется особая точность, тем более что без него современная квантовая теория никогда не могла бы возникнуть. Необходимо поэтому кое-что сказать о нем.

Резерфорд дал экспериментальные основания рассматривать атом как состоящий из заряженного положительным электричеством ядра, окруженного гораздо более легкими частицами, называемыми «электронами», которые заряжены отрицательным электричеством и вращаются, подобно планетам, по орбитам вокруг ядра. Когда атом нейтрален, количество его орбитальных электронов составляет атомный номер соответствующего элемента; всегда атомный номер равен положительному электричеству, которое несет в себе ядро. Атом водорода состоит их ядра и одного электрона; ядро атома водорода было названо «протоном». Считалось, что ядра других элементов могут рассматриваться как состоящие из протонов и электронов, причем количество протонов в них больше, чем электронов, в соответствии с атомным номером элемента. Так, считалось, что гелий, номер которого 2, имеет ядро, состоящее из четырех протонов и двух электронов. Атомный вес практически определяется числом протонов, поскольку масса протона приблизительно в 1850 раз больше массы электрона, так что добавление электронов к общей массе почти неуловимо.

Позднее было обнаружено, что, кроме электронов и протонов, имеются другие составные части атомов, называемые «позитронами» и «нейтронами». Позитрон во всем подобен электрону, за исключением того, что он заряжен положительно, а не отрицательно; он имеет такую же массу, как электрон, и, вероятно, тот же размер, если о них вообще можно говорить, что они имеют размер. Нейтрон не несет электрического заряда, но имеет приблизительно такую же массу, как и протон. Вполне возможно, что протон состоит из позитрона и нейтрона. Если это так, то имеются три вида самых малых составных частей в усовершенствованном атоме Резерфорда-Бора: нейтрон, который имеет массу, но не имеет электрического заряда, позитрон, заряженный положительно, и электрон, несущий электрический заряд, равный заряду позитрона, но только отрицательный.

Но мы должны вернуться к теориям, предшествовавшим открытию нейтронов и позитронов.

Бор добавил к картине, данной Резерфордом, теорию, касающуюся возможных орбит электронов, которая впервые объясняла линии в спектре того или иного элемента. Это математическое объяснение было почти (но не вполне) закончено в отношении водорода и положительно заряженного гелия; в других случаях математические расчеты были слишком трудными, но, по-видимому, не было оснований предполагать, что теория дает ошибочные результаты при разработке математической стороны дела. Теория Бора использовала квантовую постоянную h Планка, относительно которой надо сказать несколько слов.

Планк, изучая радиацию, доказал, что энергия колебаний частоты v должна быть равна или hv, или 2hv, или 3hv, или какому-либо другому целому числу, кратному hv, где h есть «постоянная Планка», величина которой в единицах CGS равна приблизительно 6,55х10-27, а размерность есть размерность действия, то есть произведение энергии на время. До Планка предполагали, что энергия волны может изменяться непрерывно, но он убедительно показал, что это не так. Частота колебаний есть число колебаний в секунду. У света частота определяет цвет; фиолетовый свет имеет наивысшую частоту, красный — самую низкую. Имеются и другие волны совершенно такого же вида, как и световые, но не соответствующие тем частотам, которые являются причиной зрительного ощущения цвета. Более высокие частоты, чем у фиолетовых лучей, имеют — в возрастающем порядке — ультрафиолетовые лучи, рентгеновские лучи и Y-лучи; частоты, более низкие, чем у красных лучей, имеют инфракрасные лучи и лучи, используемые в беспроволочном телеграфе.

Когда атом испускает свет, то это происходит потому, что он выделяет количество энергии, равное энергии световой волны. Если он испускает свет частоты v, то он должен, согласно теории Планка, отдать количество энергии, измеряемое hv или каким-либо целым числом, кратным hv. Бор предположил, что это происходит потому, что какой-то орбитальный электрон перемещается с большей орбиты на меньшую; вследствие перехода электрона с одной орбиты на другую должно высвобождаться количество энергии, равное hv или какому-либо целому числу, кратному этому количеству. Отсюда следует, что возможны только определенные орбиты. В атоме водорода должны быть наименьшие из возможных орбит, а другие должны иметь радиус, в 4, 9, 16… раз больший, чем радиус минимальной орбиты. Было обнаружено, что эта теория, впервые появившаяся в 1913 году, хорошо согласуется с данными наблюдения, и поэтому она на некоторое время завоевала общее признание. Постепенно, однако, выявились факты, которых она не могла объяснить, и таким образом оказалось, что хотя она и является шагом на пути к истине, но пользоваться прежним признанием уже не может. Новая и более радикальная квантовая теория была создана в 1925 году — в основном Гейзенбергом и Шрёдингером.

В современной теории уже не делается попыток создания наглядной картины атома. Атом только тогда свидетельствует о своем существовании, когда испускает энергию, и поэтому экспериментальное свидетельство может касаться только изменений энергии. Современная теория берет из теории Бора положение, согласно которому энергия в атоме должна иметь одно из дискретных значений ряда, включающее h, каждое из этих значений называется «уровнем энергии». Относительно же того, что дает атому его энергию, эта теория хранит мудрое молчание.

Одним из самых странных моментов теории является то, что она отбросила различие между волнами и частицами. Ньютон думал, что свет состоит из частиц, испускаемых источником света; Гюйгенс же думал, что он состоит из волн. Взгляд Гюйгенса возобладал и до последнего времени считался твердо установленным. Но новые экспериментальные факты для своего объяснения потребовали признания частиц, которые были названы «фотонами». В противоположность этому де Бройль выдвинул гипотезу, что вещество состоит из волн. В конце концов оказалось, что все в физике может быть объяснено как с помощью корпускулярной гипотезы, так и с помощью волновой гипотезы.

Таким образом, между этими гипотезами нет физического различия, и каждая из них может быть принята в любой проблеме как наиболее для нас удобная. Но какую бы из них мы ни выбрали, мы должны держаться избранной; мы не должны смешивать обе гипотезы в одном и том же вычислении.

В квантовой теории индивидуальные атомные события не, определяются уравнениями; исходя из уравнений, можно в достаточной степени показать, что их возможности образуют дискретный ряд и что существуют правила, определяющие, как часто каждая возможность будет осуществлена в большом числе случаев. Имеются основания думать, что это отсутствие полного детерминизма объясняется не несовершенством теории, а собственными свойствами событий малого масштаба.

Порядок, обнаруживаемый в макроскопических явлениях, является статистическим порядком. Явления, включающие большие количества атомов, остаются детерминированными, но каково может быть поведение индивидуального атома при данных обстоятельствах, установить нельзя не только потому, что наше познание ограниченно, но и потому, что нет физических законов, дающих определенный результат.

Существует и другой результат квантовой теории, по поводу которого, по-моему, было поднято слишком много шуму, а именно то, что называется «принципом неопределенности» Гейзенберга. Согласно этому принципу, имеется теоретический предел точности, с которой определенные связанные величины могут быть одновременно измерены. При определении состояния физической системы имеются определенные пары связанных величин; одна такая пара есть положение и импульс (или скорость при условии, что масса постоянна), другая — есть энергия и время. Общеизвестно, конечно, что ни одна физическая величина не может быть измерена с полной точностью, но всегда при этом предполагалось, что не существует теоретического предела для возрастания точности, достижимой при совершенной технике. Согласно же принципу Гейзенберга, это не так. Если мы попытаемся измерить одновременно две связанные величины упомянутого вида, то всякое возрастание точности в измерении одного из них (после определенного предела) связано с уменьшением точности в измерении другого. При этом будут ошибки в обоих измерениях и произведение этих двух ошибок никогда не будет меньше, чем h/2П. Это значит, что* если одно измерение будет абсолютно точным, ошибка другого будет бесконечно велика. Предположим, например, что вы хотите определить положение и скорость частицы в определенное время: если вы определяете ее положение с большой точностью, то будет большая ошибка в определении скорости, а если вы определяете скорость с большой точностью, то будет большая ошибка в определении положения. То же получается и при определении энергии и времени: если вы измеряете энергию очень точно, то время, когда система имеет эту энергию, будет неопределенным, а если вы очень точно фиксируете время, то энергия будет неопределенной в широких пределах. Это обстоятельство зависит не от несовершенства нашего измерительного прибора, а является существенным принципом физики.

Имеются физические соображения, которые делают этот принцип не столь уж удивительным. Ясно, что h есть очень маленькая величина, поскольку она измеряется числом порядка 1027. Поэтому везде, где участвует h, мы имеем дело с объектами чрезвычайно малой величины. Когда астроном наблюдает Солнце, оно сохраняет гордое безразличие к его действиям. Но когда физик пытается обнаружить, что происходит с атомом, то прибор, посредством которого он производит свои наблюдения, оказывает, по-видимому, какое-то действие на атом. Детальные исследования показывают, что прибор, наиболее приспособленный для определения положения атома, должен, по-видимому, влиять на его скорость, а прибор, наиболее приспособленный для определения его скорости, должен, по-видимому, изменять его положение. Подобные же соображения применимы и к другим парам связанных между собой величин. Поэтому я не думаю, что принцип неопределенности имеет какое-либо философское значение, которое ему иногда приписывают.

Квантовые уравнения отличаются от уравнений классической физики в весьма важном отношении, а именно в том, что они «нелинейны». Это значит, что если вы открыли действие только одной причины, а затем действие только другой причины, то вы не можете найти действие их обеих посредством складывания двух определенных порознь действий. Получается очень странный результат. Допустим, например, что вы имеете экран с маленькой щелью и что вы бомбардируете его частицами; некоторые из них пройдут через щель. Допустим теперь, что вы закроете первую щель и сделаете другую; тогда некоторые частицы пройдут через вторую щель. Теперь откройте обе щели сразу. Вы будете ожидать, что количество проходящих через обе щели частиц будет равно сумме двух прежних количеств, но оказывается, что это не так. На поведение частиц у одной щели, по-видимому, оказывает влияние существование другой щели. И хотя уравнения таковы, что предсказывают этот результат, но он остается все же удивительным. В квантовой механике меньше независимости причин, чем в классической физике, и это создает дополнительные трудности при вычислениях.

И теория относительности, и квантовая теория привели к замене старого понятия «массы» понятием «энергии». «Массу» обычно определяли как «количество материи»; «материя» была, с одной стороны, «субстанцией» в метафизическом смысле, а с другой стороны, технической формой обычного понятия «вещи». «Энергия» считалась на ранних стадиях состоянием «материи». Энергию подразделяли на два вида: кинетическую и потенциальную. Кинетическая энергия частицы принималась равной половине произведения ее массы на квадрат скорости. Потенциальная энергия измерялась работой, необходимой для перемещения частицы в ее настоящее положение с какого-либо фиксированного положения. (Это делает постоянную неопределенной, но это не существенно). Если вы переносите камень с земли на вершину башни, то он в процессе этого переноса приобретает потенциальную энергию; если вы бросаете его с вершины, то в процессе падения камня его потенциальная энергия постепенно переходит в кинетическую. В каждой замкнутой системе общий запас энергии постоянен. Существуют разные формы энергии, одной из которых является теплота. У энергии вселенной есть тенденция принимать все больше и больше форму теплоты. После того как Джоуль определил механический эквивалент теплоты, закон сохранения энергии впервые стал хорошо обоснованным научным обобщением.

Теория относительности и эксперименты показали, что масса не постоянна, как считалось раньше, а при быстром движении увеличивается; если бы частица могла двигаться со скоростью света, ее масса стала бы бесконечно большой. Поскольку всякое движение относительно, различные определения массы, даваемые различными наблюдателями в соответствии с их движением по отношению к данной частице, все одинаково законны. Однако и с точки зрения этой теории имеется все же одно определение массы, которое может рассматриваться как основное, а именно определение, даваемое наблюдателем, который находится в покое по отношению к телу, масса которого подлежит определению. Поскольку увеличение массы со скоростью заметно только при скоростях, сравнимых со скоростью света, такое определение практически годится для всех случаев, за исключением частиц альфа и бета, испускаемых радиоактивными телами.

Квантовая теория осуществила еще большее посягательство на понятие «массы». Теперь оказывается, что везде, где энергия теряется в результате ее излучения, имеется также и соответствующая потеря массы. Считается, что Солнце теряет свою массу со скоростью четыре миллиона тонн в секунду. Другой пример: нейтральный атом гелия состоит (согласно теории Бора) из четырех протонов и четырех электронов, тогда как атом водорода состоит из одного протона и одного электрона. В случае, если бы это было действительно так, можно было бы предположить, что масса атома гелия в четыре раза больше массы атома водорода. Однако это не так. Принимая массу атома гелия за 4, мы находим, что масса атома водорода равна не 1, а 1,008. Причиной этого служит то, что когда четыре атома водорода соединяются, чтобы образовать один атом гелия, происходит потеря энергии (в результате излучения — так, по крайней мере, мы можем предположить, ибо этот процесс никогда еще не наблюдался).

Думают, что такое соединение четырех атомов водорода для образования одного атома гелия происходит внутри звезд и могло бы происходить и в земных лабораториях, если бы могли создать температуры, сравнимые с температурами внутренних областей звезд. Как известно, в настоящее время этот процесс осуществлен в земных условиях в форме термоядерных взрывов. Почти всякая потеря энергии, связанная с образованием других элементов (не водорода), происходит при их превращении в гелий, причем на более поздних стадиях потеря энергии небольшая. Если бы гелий или какой-либо другой элемент (но не водород) мог быть искусственно создан из водорода, тогда произошло бы колоссальное освобождение энергии в форме света и теплоты. Это создало бы возможность атомных бомб, более разрушительных, чем теперешние, которые делаются из урана. В этом было бы и другое преимущество: запас урана на нашей планете ограничен, и есть опасность, что он будет израсходован раньше, чем исчезнет человеческая раса, а если бы мог использоваться практически неограниченный запас водорода в морях, то были бы достаточные основания надеяться, что homo sapiens положил бы конец самому себе к большой выгоде других, менее жестоких животных.

Но пора вернуться к менее веселым темам.

Язык теории Бора все еще пригоден для многих целей, но не для установления основополагающих принципов квантовой физики. Чтобы установить эти принципы, мы должны распрощаться со всякими наглядными изображениями того, что происходит в атоме, и должны оставить попытки сказать, что представляет собой энергия. Мы должны сказать просто: имеется нечто количественно измеримое, чему мы даем название «энергия»; это нечто очень неравномерно распределено в пространстве; имеются весьма малые области, в которых сосредоточены очень большие количества этого нечто и которые называются «атомами», и имеются такие области, в которых, по старым понятиям, имеется материя; эти области вечно поглощают или испускают энергию в формах, которые имеют периодическую «частоту». Квантовые уравнения дают правила, определяющие возможные формы энергии, испускаемой данным атомом, и отношение случаев (на основе большого количества), в которых реализуется каждая из этих возможностей. Здесь все абстрактно и выражается математически, за исключением ощущений цвета, тепла и так далее, вызываемых излучающейся энергией в наблюдающем исследователе-физике.

Математическая физика содержит в себе такую колоссальную теоретическую надстройку, что ее чувственное основание почти совершенно затемняется» Тем не менее это эмпирическая наука, и ее эмпирический характер ясно выделяется там, где дело касается физических постоянных. Эддингтон дает следующий перечень основных постоянных физики:

е — заряд электрона,

m — масса электрона,

М — масса протона,

h — постоянная Планка,

с — скорость света,

G — постоянная тяготения,

Ламед, — космическая постоянная.

Эти постоянные участвуют в основных уравнениях физики, и обычно (хотя и не всегда) считается, что ни одна из них не может быть выведена из других. Считается, что другие постоянные теоретически выводятся из этих; иногда их действительно можно вычислить, иногда же математики этого не могут сделать из-за слишком больших трудностей. Основные постоянные представляют собой то, что остается от грубых фактов после всего того, что может быть сведено к уравнениям (я не включаю сюда тех грубых фактов, которые являются чисто географическими).

Следует отметить, что мы гораздо более уверены в значении этих постоянных, чем в той или иной их интерпретации. Постоянная Планка в течение ее короткой истории с 1900 года словесно выражалась различными способами, однако все эти изменения нисколько не повлияли на ее числовое значение. Что бы ни случилось с квантовой теорией в дальнейшем, можно быть уверенным, что постоянная h сохранит свое значение. То же самое можно сказать и о е и m, то есть о заряде и массе электрона. Электроны могут полностью исчезнуть из основных принципов физики, но е и m безусловно выживут. В известном смысле можно сказать, что открытие и измерение этих постоянных является наиболее прочным достижением современной физики.