Мнимые числа
Мнимые числа
Если бы мы жили несколько тысяч лет тому назад, мы бы, несомненно, предсказали открытие мнимых чисел, поскольку действительные числа – это лишь принадлежащие к общепринятой реальности варианты того, что мы переживаем, когда наблюдаем и считаем. Если бы мы жили в далеком прошлом и понимали, что числа символизируют не только явные процессы, но и тонкие процессы, которые не выявляются непосредственно, мы бы, вероятно, подумали, что нам необходимо новое описание событий, которое включает в себя действительные числа, а также что-то наподобие «воображаемых» чисел, чтобы описывать аспекты событий, относящиеся как к ОР, так и к НОР.
После открытия мнимых чисел в XVI и XVII вв. оказалось, что эти числа не настолько мнимые, как первоначально думали математики, однако эти числа все-таки дают нам понимание НОР-аспектов природы и, конечно, нашей собственной природы. Более того, нам очень важно исследовать эти числа, так как они образуют основу описания квантовой физики и теории относительности. Современная физика не может существовать без мнимых чисел.
Числа и числовые системы постепенно развивались на протяжении многих тысячелетий. Сперва появились идеи счета и чисел, затем такие современные понятия, как действительные положительные и отрицательные числа, ноль и дроби. За ними последовали рациональные и иррациональные числа1.
Как видно из терминов «рациональный» и «иррациональный», открытие чисел с самого начала осложнялось вопросом о том, откуда происходят эти удивительные символы и что они собой представляют. Когда в эпоху Возрождения Готфрид Лейбниц и другие разрабатывали мнимые числа для решения проблем в математике, понятие мнимых чисел также считалось бесплотным. Мнимые числа сравнивали с духами: они присутствовали, но их было невозможно увидеть.
Позвольте мне познакомить вас с мнимыми числами. Вспомните, что ряд действительных положительных чисел 1, 2, 3, 4… не был достаточно большим числовым полем, чтобы включать в себя вычитание, поскольку в поле положительных чисел нельзя было найти такие числа, как 5 – 7 (= -2). Если мы добавляем отрицательные числа, то имеем более полное числовое поле: -4, -3, -2, -1, 0, +1, +2, +3, +4 и т. д. На этом большем поле мы теперь можем играть с вычитанием, а также сложением, умножением и делением. Отрицательные числа добавили к положительным числам новое измерение.
Вскоре стало понятно, что в дополнение к действительным и отрицательным числам необходимо новое измерение. Почему? Потому что теперь можно было складывать, вычитать и делить и по-прежнему находиться в числовом поле, но было нельзя извлекать квадратный корень из отрицательного числа и оставаться в этом поле. Никто не знал, что представляет собой квадратный корень из -4. Математики знали, что квадратный корень из 4 – это число 2 (то есть V4 = 2), но что такое квадратный корень из -4? Какое число, умноженное на само себя, дает -4? Чтобы решить эту проблему, математики думали о добавлении мнимых чисел к действительным числам.
Формальный способ записи мнимых чисел состоит в помещении после действительного числа буквы i [12]. Например, если действительное число 4 написать как 4i, то оно будет обозначать мнимое число.
Буква i имеет следующий смысл: она символизирует квадратный корень из -1 (то есть ? -1). По-другому можно сказать, что квадратный корень из -1 сокращенно обозначается буквой i. Таким образом, ? -1 = i.
Например, если b – действительное число, тогда соответствующее ему мнимое число можно записать как ib, что является сокращенной формой (? -1)b.
Первые математики, которые разрабатывали и использовали мнимые числа в XVII в., полагали, что мнимые числа нереальны и невозможны. Как может отрицательное число иметь квадратный корень? Храбрецом, который первым опубликовал формулу, включавшую в себя таинственные мнимые числа, был итальянский математик XVI в. Джером Кардан. Однако он испытывал большие сомнения в отношении своей работы и называл числа бессмысленными, фиктивными и мнимыми2.
Что же в действительности представляют собой мнимые числа? Вспомните, что действительные числа кодируют, но маргинализируют переживания НОР Многие из конкретных и наблюдаемых свойств вещей, которые мы считаем, не учитываются действием простого счета. Из-за процесса маргинализации, действительных чисел никогда не будет достаточно для полного описания событий, поэтому в математике, наряду с общепринятыми количествами, вроде 1, 2 и 3, нам требуется нечто вроде воображаемых или необщепринятых качеств. Будучи полезными, мнимые числа также указывают назад, на магические качества, которые люди нередко ассоциируют с числами.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
8. МНИМЫЕ ДОВОДЫ В ПОЛЬЗУ РЕЛЯТИВИЗМА
8. МНИМЫЕ ДОВОДЫ В ПОЛЬЗУ РЕЛЯТИВИЗМА Многие условия содействуют распространенности релятивистического учения о ценностях, т.е. учения, согласно которому все ценности относительны. Прежде всего следует иметь в виду, как это уже было разъяснено, что неорганическое
Противоречия мнимые и реальные
Противоречия мнимые и реальные Полемическая заметка Ильенкова в «Литературной газете» (1969) Доктор П. Медавар отмечает две болезни в современной духовной культуре — «поэтизм» и «сциентизм» (от латинского «scientia» — наука). «Поэтизм», по его определению, — это
Числа на барабане
Числа на барабане Некий мистер Ли Таврос, мастер по изготовлению музыкальных инструментов, однажды попытался оживить свой бизнес «барабанной дробью» — с помощью загадок на числа. Во время ежегодного съезда собратьев по ремеслу он, стремясь привлечь публику к своему
К. МАРКС и Ф. ЭНГЕЛЬС МНИМЫЕ РАСКОЛЫ В ИНТЕРНАЦИОНАЛЕ
К. МАРКС и Ф. ЭНГЕЛЬС МНИМЫЕ РАСКОЛЫ В ИНТЕРНАЦИОНАЛЕ ЗАКРЫТЫЙ ЦИРКУЛЯР ГЕНЕРАЛЬНОГО СОВЕТА МЕЖДУНАРОДНОГО ТОВАРИЩЕСТВА РАБОЧИХ[1]Написано К. Марксом и Ф. Энгельсом между серединой января — 5 марта 1872 г. Напечатано в виде брошюры в Женеве в 1872 г.Печатается по тексту
Глава VII. СИМВОЛИЧЕСКИЕ ЧИСЛА
Глава VII. СИМВОЛИЧЕСКИЕ ЧИСЛА Прежде чем перейти к рассмотрению теории космических циклов, мы должны сделать несколько замечаний о роли символики чисел в произведении Данте. В работе профессора Родольфо Бенини[58] мы нашли об этом очень интересные замечания, однако он не
Числа
Числа Авторитет Фурье, Референция, Цитата, Наука, предшествующий Дискурс, позволяющий ему говорить и самому обладать властью над «глупостью 25 ученых веков, которые об этом и не думали», есть расчет (как сегодня для нас — формализация). Этому расчету нет необходимости быть
ОБЩАЯ ТЕОРИЯ ЧИСЛА
ОБЩАЯ ТЕОРИЯ ЧИСЛА § 10. Вступление.Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика— наука о числе—есть уже
Числа и рекурсия
Числа и рекурсия Благодаря восприятию множественности разум становится разумным. Люди умеют считать, различают объекты и ощущают одинаковость. Последовательный счёт и математические способности являются высшими феноменами, вершиной айсберга, которая опирается на
ФИЛОСОФИЯ ЧИСЛА
ФИЛОСОФИЯ ЧИСЛА «Жизнь подобна игрищам: иные приходят на них состязаться, иные — торговать, а самые счастливые — смотреть; так и в жизни: иные, подобно рабам, рождаются жадными до славы и наживы, между тем как философы — до единой только истины», — так говорил Пифагор (584 —
Числа, отличные от натуральных
Числа, отличные от натуральных В предыдущих параграфах мы рассматривали действия над натуральными числами и отметили тот замечательный факт, что машина Тьюринга может оперировать с натуральными числами произвольной величины, несмотря на то, что каждая машина имеет
Действительные числа
Действительные числа Напомним, что натуральные числа являются целыми величинами:0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…Это самый элементарный и фундаментальный вид чисел. Ими можно количественно измерить любую дискретную сущность: можно говорить о двадцати семи овцах в поле, двух
Комплексные числа
Комплексные числа Оказывается, что действительные числа — это не единственная математически мощная и изящная система чисел. Система действительных чисел все же не лишена некоторых неудобств. Например, квадратные корни можно извлекать только из положительных чисел (или
Числа, идущие назад
Числа, идущие назад Современному шаману – а потенциально мы все современные шаманы, наследники и научной, и традиционной мудрости – очень важно развертывать свой процесс, быть свободнее, воплощать его в повседневной жизни. Но это, как правило, заставляет нас забывать,
ЧИСЛА КАК ПОЛЯ
ЧИСЛА КАК ПОЛЯ Прежде чем думать о полях в математике, физике и психологии, давайте рассмотрим повседневное употребление термина «поле». Большинство из нас представляют себе поле как часть земли, выделенную для того или иного использования, например в качестве пастбища
Комплексные числа
Комплексные числа При добавлении мнимых чисел к полю действительных чисел их описательные способности увеличиваются. Получающаяся смесь действительных и мнимых чисел называется комплексными числами. Комплексные числа представляют собой сочетание действительных и