Глава 3 Конец физики
Глава 3
Конец физики
Нет более пламенных, если не сказать упертых, искателей Ответа, чем некоторые современные физики. Они склонны полагать, что все самые сложные вещи в этом мире являются просто-напросто проявлением одного. Сути. Силы. Энергетической петли, извивающейся в десятимерном гиперпространстве. Социобиолог может предположить, что за этим редукционистским импульсом маячит генетическое влияние, и так, похоже, обстояло дело с мотивацией мыслителей с начала цивилизации. В конце-то концов, Бог ведь тоже был зачат тем же импульсом.
Первым современным искателем Ответа был Эйнштейн. В последние годы жизни он пытался найти теорию, которая соединила бы квантовую механику и его теорию относительности. Для него целью открытия такой теории было определить, являлась ли Вселенная неизбежной или, как он это формулировал, «у Бога имелся какой-то выбор при создании мира». Но Эйнштейн, несомненно веривший, что наука сделала жизнь значимой, также предполагал, что ни одна теория на самом деле не может быть окончательной. Однажды он сказал, что его собственной теории относительности «придется уступить место другой, по причинам, которые мы сейчас и представить себе не можем». «Я считаю, что процесс углубления теории не имеет границ».
Большинство современников Эйнштейна рассматривали его усилия по объединению физики как результат старческого слабоумия и квазирелигиозных наклонностей. Но в семидесятые годы несколько шагов вперед, сделанные физиками, оживили мечту об унификации. Во-первых, физики показали, что точно так же, как электричество и магнетизм являются аспектами одной силы, так и электромагнетизм и сила слабых ядерных взаимодействий (которая управляет определенными типами ядерного распада) являются проявлениями скрытой «электрослабой» силы. Исследователи также разработали теорию силы сильных ядерных взаимодействий, соединяющей протоны и нейтроны в ядрах атомов. Эта теория, квантовая хромодинамика, утверждает, что протоны и нейтроны состоят из еще более элементарных частиц, называемых кварками. Теория электрослабой силы и квантовая хромодинамика вместе составляют стандартную модель физики элементарных частиц.
Воодушевленные этим успехом, ученые в поисках более глубокой теории вышли далеко за пределы стандартной модели. Ими руководило математическое свойство под названием симметрия, позволяющее элементам системы подвергаться трансформациям — по аналогии с вращением или отражением в зеркале — без фундаментальных изменений. Симметрия стала sine qua поп (без чего нет, лат. — Пер.) физики частиц. В поисках теорий с более глубокими симметриями теоретики стали обращаться к измерениям более высокого порядка. Точно так же, как астронавт, поднимающийся над двумерной плоскостью Земли, может лучше понять ее глобальную симметрию, так и теоретики различают симметрии более высокого порядка, лежащие в основе взаимодействия частиц.
Одна из самых насущных проблем в физике частиц возникает из определения частиц как точек. Как деление на ноль ведет к бесконечности и таким образом к бессмысленному результату, так и расчеты, включающие подобные точкам частицы, часто заканчиваются чушью. Создав стандартную модель, физики смогли просто выкинуть все эти проблемы. Но относительность Эйнштейна, с ее искажениями пространства и времени, казалось, требовала даже более радикального подхода.
В самом начале восьмидесятых многие физики поверили, что этот подход представляет теория суперструн. Эта теория заменила подобные точкам частицы крохотными энергетическими петлями, которые исключали абсурдности, возникающие при расчетах. Как вибрация струн скрипки порождает различные звуки, так и вибрация этих струн может генерировать все силы и частицы физического косма. Суперструны могли устранить и одну из трудностей физики частиц: возможность того, что не существует никакого окончательного основания для физической реальности, а есть только бесконечная последовательность все меньших и меньших частиц, вставленных одна в другую, подобно матрешкам. В соответствии с теорией суперструн существует фундаментальная шкала, за которой все вопросы, касающиеся пространства и времени, становятся бессмысленными.
Однако эта теория страдает от нескольких проблем. Во-первых, кажется, что есть бессчетные возможные версии, и теоретики не могут узнать, какая из них правильная. Более того, думают, что суперструны существуют не только в четырех измерениях, в которых живем мы (три измерения пространства плюс время), но также и в шести дополнительных измерениях, которые некоторым образом «уплотнены» или сжаты в бесконечно малые шарики в нашей Вселенной. В конце концов, струны так же малы в сравнении с протоном, как протон в сравнении с Солнечной системой. В некотором смысле они более отдалены от нас, чем квазары, маячащие у дальнего края видимой Вселенной. Сверх-проводимый суперколлайдер, который должен был провести физиков гораздо глубже в микрокосм, чем любой предшествующий ускоритель частиц, составил бы 54 мили в диаметре. Для того чтобы исследовать косм, в котором, как думают, находятся суперструны, физикам придется построить ускоритель частиц размером в 1000 световых лет в окружности. (А всю Солнечную систему можно облететь за один световой день.) И даже ускоритель такого размера не позволит нам увидеть дополнительные измерения, в которых действуют суперструны.