Правило II
Правило II
Нужно заниматься только теми предметами, о которых наши умы очевидно способны достичь достоверного и несомненного знания.
Всякая наука есть достоверное и очевидное познание, и тот, кто сомневается во многих вещах, не более сведущ, чем тот, кто о них никогда не думал, но при этом первый кажется более несведущим, чем последний, если о некоторых вещах он составил ложное мнение; поэтому лучше не заниматься вовсе, чем заниматься предметами настолько трудными, что, будучи не в состоянии отличить в них истинное от ложного, мы вынуждены допускать сомнительное в качестве достоверного, ибо в этих случаях надежда на приумножение знания не так велика, как риск его убавления. И таким образом, этим положением мы отвергаем все те познания, которые являются лишь правдоподобными, и считаем, что следует доверять познаниям только совершенно выверенным, в которых невозможно усомниться. И как бы ни убеждали себя ученые в том, что существует крайне мало таких познаний, ибо они вследствие некоего порока, обычного для человеческого рода, отказывались размышлять о таких познаниях как слишком легких и доступных каждому, я, однако, напоминаю, что их гораздо больше, чем они полагают, и что их достаточно для достоверного доказательства бесчисленных положений, о которых до этого времени они могли рассуждать только предположительно; и поскольку они считали недостойным ученого человека признаться в своем незнании чего-либо, они настолько привыкли приукрашивать свои ложные доводы, что впоследствии мало-помалу убедили самих себя и, таким образом, стали выдавать их за истинные.
Но если мы будем строго соблюдать это правило, окажется очень немного вещей, изучением которых можно было бы заняться. Ибо вряд ли в науках найдется какой-либо вопрос, по которому остроумные мужи зачастую не расходились бы между собой во мнениях. А всякий раз, когда суждения двух людей об одной и той же вещи оказываются противоположными, ясно, что по крайней мере один из них заблуждается или даже ни один из них, по-видимому, не обладает знанием: ведь если бы доказательство одного было достоверным и очевидным, он мог бы так изложить его другому, что в конце концов убедил бы и его разум. Следовательно, обо всех вещах, о которых существуют правдоподобные мнения такого рода, мы, по-видимому, не в состоянии приобрести совершенное знание, поскольку было бы дерзостью ожидать от нас самих большего, чем дано другим; так что, если мы правильно рассчитали, из уже открытых наук остаются только арифметика и геометрия, к которым нас приводит соблюдение этого правила.
Мы, однако, не осуждаем ввиду этого тот способ философствования, который дотоле изобрели другие, и орудия правдоподобных силлогизмов, чрезвычайно пригодные для школьных баталий, ибо они упражняют умы юношей и развивают их посредством некоего состязания, и гораздо лучше образовывать их мнениями такого рода, даже если те очевидно являются недостоверными, поскольку служат предметом спора между учеными, чем предоставлять их, незанятых, самим себе. Ведь, может быть, без руководителя они устремились бы к пропасти, но, пока они идут по следам наставников, пусть и отступая иногда от истинного, они наверняка избрали путь во всяком случае более безопасный по той причине, что он уже был изведан более опытными людьми. И мы сами рады, что некогда точно так же были обучены в школах, но поскольку мы уже освободились от клятвы, привязывавшей нас к словам учителя, и наконец в возрасте достаточно зрелом убрали руку из-под его ферулы, если мы всерьез хотим сами установить себе правила, с помощью которых мы поднялись бы на вершину человеческого познания, то среди первых, конечно, следует признать это правило, предостерегающее, чтобы мы не злоупотребляли досугом, как делают многие, пренебрегая всем легким и занимаясь только трудными вещами, о которых они искусно строят поистине изощреннейшие предположения и весьма правдоподобные рассуждения, но после многих трудов наконец слишком поздно замечают, что лишь увеличили множество сомнений, но не изучили никакой науки.
Теперь же, так как мы несколько ранее сказали, что из других известных дисциплин только арифметика и геометрия остаются не тронутыми никаким пороком лжи и недостоверности, то, чтобы более основательно выяснить причину, почему это так, надо заметить, что мы приходим к познанию вещей двумя путями, а именно посредством опыта или дедукции. Вдобавок следует заметить, что опытные данные о вещах часто бывают обманчивыми, дедукция же, или чистый вывод одного из другого, хотя и может быть оставлена без внимания, если она неочевидна, но никогда не может быть неверно произведена разумом, даже крайне малорассудительным. И мне кажутся малополезными для данного случая те узы диалектиков, с помощью которых они рассчитывают управлять человеческим рассудком, хотя я не отрицаю, что эти же средства весьма пригодны для других нужд. Действительно, любое заблуждение, в которое могут впасть люди (я говорю о них, а не о животных), никогда не проистекает из неверного вывода, но только из того, что они полагаются на некоторые малопонятные данные опыта или выносят суждения опрометчиво и безосновательно.
Из этого очевидным образом выводится, почему арифметика и геометрия пребывают гораздо более достоверными, чем другие дисциплины, а именно поскольку лишь они одни занимаются предметом столь чистым и простым, что не предполагают совершенно ничего из того, что опыт привнес бы недостоверного, но целиком состоят в разумно выводимых заключениях. Итак, они являются наиболее легкими и очевидными из всех наук и имеют предмет, который нам нужен, поскольку человек, если он внимателен, кажется, вряд ли может в них ошибиться. Но потому не должно быть удивительным, если умы многих людей сами собой скорее предаются другим искусствам или философии: ведь это случается, поскольку каждый смелее дает себе свободу делать догадки о вещи темной, чем об очевидной, и гораздо легче предполагать что-либо в каком угодно вопросе, нежели достигать самой истины в одном, каким бы легким он ни был.
Теперь из всего этого следует заключить не то, что надо изучать лишь арифметику и геометрию, но только то, что ищущие прямой путь к истине не должны заниматься никаким предметом, относительно которого они не могут обладать достоверностью, равной достоверности арифметических и геометрических доказательств.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Правило II
Правило II Нужно заниматься только теми предметами, о которых наши умы очевидно способны достичь достоверного и несомненного знания.Всякая наука есть достоверное и очевидное познание, и тот, кто сомневается во многих вещах, не более сведущ, чем тот, кто о них никогда не
Правило III
Правило III Касательно обсуждаемых предметов следует отыскивать не то, что думают о них другие или что предполагаем мы сами, но то, что мы можем ясно и очевидно усмотреть или достоверным образом вывести, ибо знание не приобретается иначе.Следует читать книги древних,
Правило IV
Правило IV Для разыскания истины вещей необходим метод.Смертными владеет любопытство настолько слепое, что часто они ведут свои умы по неизведанным путям без всякого основания для надежды, но только для того, чтобы проверить, не лежит ли там то, чего они ищут; как если бы
Правило V
Правило V Весь метод состоит в порядке и расположении тех вещей, на которые надо обратить взор ума, чтобы найти какую-либо истину. Мы будем строго придерживаться его, если шаг за шагом сведем запутанные и темные положения к более простым, а затем попытаемся, исходя из
Правило VI
Правило VI Для того чтобы отделять самые простые вещи от запутанных и исследовать их по порядку, необходимо в каждом ряде вещей, в котором мы прямо вывели некоторые истины из других, усматривать, что в нем является наиболее простым и насколько удалено от этого все
Правило X
Правило X Чтобы стать находчивым, ум должен упражняться в разыскании тех вещей, которые уже были открыты другими, и при помощи метода обозревать даже самые незамысловатые изобретения людей, но в особенности те, которые объясняют или предполагают порядок.Признаюсь, я
Правило XI
Правило XI После того как мы усмотрели несколько простых положений, полезно, если мы выводим из них нечто иное, обозреть их в последовательном и нигде не прерывающемся движении мысли, поразмышлять над их взаимными отношениями и отчетливо представить сразу столь многие из
Правило XII
Правило XII Наконец, следует воспользоваться всеми вспомогательными средствами разума, воображения, чувства и памяти как для отчетливого усмотрения простых положений и для надлежащего сравнения искомых вещей с известными с целью познания первых, так и для отыскания тех
Правило XIV
Правило XIV То же самое следует отнести к реальному протяжению тел, и протяжение в целом должно предстать воображению через посредство простых фигур, ибо таким образом оно гораздо отчетливее представляется разумом.Для того же, чтобы воспользоваться также и помощью
Правило XV
Правило XV В большинстве случаев полезно также чертить эти фигуры и представлять их внешним чувствам для того, чтобы таким способом легче удерживать нашу мысль сосредоточенной.А то, как следует изображать эти фигуры, чтобы, когда они находятся перед глазами, их образы
Правило XVI
Правило XVI Что же касается вещей, которые не требуют наличного внимания ума, хотя и необходимы для заключения, то их лучше обозначать посредством наиболее сокращенных знаков, чем посредством полных фигур, ибо тогда память не сможет ошибаться, а вместе с тем и мысль не
Правило XIX
Правило XIX Посредством этого метода рассуждения нужно отыскивать столько величин, выраженных двумя различными способами, сколько неизвестных терминов мы допускаем в качестве известных, для того чтобы прямо обозреть затруднение; ибо таким образом мы будем иметь столько
Правило XX
Правило XX Отыскав уравнения, нужно произвести опущенные нами действия, ни в коем случае не пользуясь умножением тогда, когда будет уместно
Правило XXI
Правило XXI Если имеется много таких уравнений, их все необходимо свести к одному, а именно к тому, члены которого займут меньшее число ступеней в ряде непрерывно пропорциональных величин, соответственно каковому они и должны быть расположены по
а. Правило
а. Правило Правило или мерило, о котором уже было говорено, есть прежде всего определенная в себе величина, служащая единицею относительно определенного количества, которое есть отдельное существование, существующее в некотором другом нечто, как нечто, присущее правилу,