Глава XV О том, что небо этого нового мира должно казаться его жителям совершенно подобным нашему

We use cookies. Read the Privacy and Cookie Policy

Глава XV

О том, что небо этого нового мира должно казаться его жителям совершенно подобным нашему

Выяснив природу и свойства действия, рассматриваемого мною как свет, я должен показать, каким образом через его посредство жители планеты, которую я назвал Землей, могут видеть это небо совершенно похожим на наше.

Прежде всего, нет никакого сомнения, что они должны видеть тело, обозначенное S (рис. 4), полным света и подобным нашему Солнцу, ввиду того что от всех точек поверхности этого тела к их глазам идут лучи. И так как оно значительно ближе к ним, чем звезды, то оно должно казаться им более крупным. Правда, частицы малого неба ABCD, вращающегося вокруг Земли, оказывают некоторое сопротивление этим лучам, но так как все частицы большого неба, простирающегося от S доD, делают их более мощными, то частицы, которые находятся между D и Т, будучи сравнительно немногочисленными, могут лишить их только незначительной части их силы. И даже всего действия частиц большого неба FGGF (рис. 2) недостаточно, чтобы препятствовать лучам многих неподвижных звезд достигать Земли с той ее стороны, которая не освещена Солнцем.

Нужно отметить, что большие небеса, т. е. небеса, имеющие своим центром неподвижную звезду, или Солнце, могут быть весьма неравными по величине, но обязательно должны быть равны по своей силе. Вся материя, находящаяся, например, на линии SB (рис. 2), должна стремиться к Е с такой же силой, с какой материя, находящаяся на линии ЕВ, стремится к S. Ибо если бы небеса не были равны по своей силе, они неизбежно через некоторое время разбились бы или по крайней мере изменились бы так, что стали бы равными.

Если, например, вся сила луча SB в точности равна силе луча ЕВ, ясно, что сила меньшего луча ТВ не может помешать силе луча ЕВ распространяться до Т. Точно так же ясно, что звезда А может простирать свои лучи до Земли Т. Материя неба, находящаяся между A и 2, содействует этим лучам сильнее, чем им противодействует материя, расположенная между 4 и T; вместе с тем материя, имеющаяся между 3 и 4, содействует этим лучам не меньше, чем им противодействует материя, находящаяся между 3 и 2. Рассуждая подобным же образом об остальных, вы можете понять, что эти звезды должны казаться расположенными в не меньшем беспорядке и быть не менее многочисленными и не менее различными по величине, чем те, которые мы видим в действительном мире.

Но в том, что касается расположения звезд, вам необходимо также обратить внимание на то, что они почти никогда не могут быть видимыми в том месте, где они находятся. Например, звезда, обозначенная Е, кажется как бы находящейся на прямой TB, а звезда А — как бы находящейся на прямой T 4. Причины этого заключаются в том, что небеса неравны по величине, а поверхности, их разделяющие, никогда не расположены таким образом, чтобы лучи, проходя через эти поверхности от звезд к Земле, пересекали их под прямым углом. Пересекая эти поверхности в наклонном направлении, лучи, как это доказано в «Диоптрике», должны искривиться и подвергнуться значительному преломлению, потому что им гораздо легче пройти по одной стороне этой поверхности, нежели по другой. Следует предполагать эти линии ТВ и Т4 и все подобные им столь длинными по сравнению с диаметром круга, описываемого Землей вокруг Солнца, что находящиеся на Земле люди видели бы звезды как бы неподвижными и прикрепленными к одним и тем же местам небосвода вне зависимости от того, в каком месте своей орбиты находится Земля, иными словами, как говорят астрономы, люди не могли бы заметить звездных параллаксов.

Что касается числа этих звезд, обратите внимание на то, — что часто одна и та же звезда может казаться находящейся в различных местах вследствие того, что различные поверхности отклоняют ее лучи в сторону Земли. Звезда, обозначенная на нашем рисунке буквой А, кажется на линии J4 благодаря лучу А24Т и вместе с тем на линии Tf благодаря лучу A6fT. Таким же образом умножаются предметы, когда на них смотрят через стекла или другие прозрачные многогранные тела.

Кроме того, в отношении величины звезд необходимо заметить, что звезды вследствие их исключительной удаленности должны казаться значительно меньшими, чем они суть на самом деле, и что значительная часть их по этой причине даже и вовсе не видна. Многие звезды показываются лишь постольку, поскольку лучи нескольких из них, соединившись, делают части небесного свода, через которые они проходят, несколько более светлыми. Эти части становятся подобными тем звездам, которые астрономы называют туманностями, или тому огромному поясу, относительно которого поэты воображают, будто он выбелен молоком Юноны. Во всяком случае, если мы допустим, что наименее удаленные звезды можно считать приблизительно равными нашему Солнцу, этого будет достаточно, чтобы заключить, что они могут казаться такими же, как те, которые кажутся наибольшими в нашем мире.

Вообще все тела, посылающие к глазам наблюдателей более мощные лучи, нежели другие тела, их окружающие, кажутся большими по сравнению с ними. Вследствие этого такие звезды должны всегда представляться большими, чем равные им части небес, граничащие с ними. Как я покажу ниже, поверхности звезд FG, GG, GF и им подобные, где происходит преломление лучей этих звезд, могут быть искривлены так, что преломление сильно увеличит видимые размеры этих звезд. Оно увеличит их даже в том случае, если поверхности эти будут совершенно плоскими.

Кроме того, весьма правдоподобно, что эти поверхности, состоящие из очень подвижной материи, которая никогда не прекращает своего движения, всегда должны немного колебаться и волноваться, вследствие чего звезды, видимые через эти поверхности, должны, подобно нашим, казаться сверкающими и как бы дрожащими. Благодаря этому дрожанию они, конечно, должны казаться несколько большими, как это бывает, например, с ликом Луны на почти тихой и неколеблющейся поверхности озера, лишь немного подернутой рябью при слабом ветерке.

По прошествии некоторого времени бывает, что эти поверхности немного изменяются, а некоторые из них, если к ним приближается комета, за небольшой промежуток времени могут значительно искривиться. Благодаря этому многие звезды по истечении некоторого времени могут оказаться несколько изменившими свое место, не изменив своей величины, или изменившими свою величину, не изменив места; некоторые же из них могут внезапно то появляться, то исчезать, что наблюдается и в действительном мире.

Что касается планет и комет, находящихся в одном и том же небе с Солнцем, то, зная, сколь велики частицы третьего элемента, из которого они состоят, и как они соединены по нескольку, что позволяет им оказывать сопротивление действию света, легко понять, что они должны быть видны благодаря солнечным лучам, падающим на них и отражаемым от них к Земле. Подобно этому, непроницаемые, или темные, предметы, находящиеся в комнате, видны благодаря лучам, которые идут к ним от освещающей это место свечи и отражаются от них к глазам смотрящего. Лучи Солнца имеют очень большое преимущество перед лучами пламени. Преимущество это состоит в том, что сила лучей не только сохраняется, но даже постепенно увеличивается по мере того, как они удаляются от Солнца и приближаются к наружной поверхности его неба. Причиной этого является то обстоятельство, что вся материя неба стремится туда же, в то время как лучи пламени, наоборот, слабеют по мере удаления от своего источника, так как увеличиваются размеры освещаемой ими сферической поверхности и сопротивление воздуха, через который они проходят. Вследствие этого предметы, близкие к пламени, освещены им значительно сильнее, чем те, которые находятся от него далеко; напротив, самые низкие планеты освещены Солнцем не сильнее, чем самые высокие, и даже не сильнее, чем кометы, которые неизмеримо больше удалены от него.

Опыт показывает нам, что нечто подобное происходит и в действительном мире. Мне кажется, можно было бы найти причину этого, если предположить, что свет в предметах — не что иное, как действие или способность, объясненные мною. Я говорю «действие или способность», потому что, если вы хорошо усвоили то, что я сейчас доказал, — а именно что, если бы пространство, где находится Солнце, было совершенно пустым, частицы его неба стремились бы к глазам смотрящих точно так же, как и в том случае, когда они получают толчок от его материи, и даже почти с такой же силой, — вы сможете себе представить, что Солнцу не нужно обладать никаким действием и даже не нужно особенно отличаться от чистого пространства, чтобы представляться нам таким, каким мы его видим.

Хотя это может показаться вам весьма парадоксальным, но это так. Впрочем, движение, совершаемое этими планетами вокруг своего центра, является причиной того, что они сверкают, но гораздо слабее и иначе, чем неподвижные звезды. А так как Луна лишена этого движения, то она совершенно не сверкает.

Рис. 16

Кометы, не находящиеся в одном небе с Солнцем, также в тот момент, когда они готовы войти в это небо, не посылают на Землю такого количества лучей, какое они могли бы посылать, если бы находились в этом небе. Поэтому людям их не видно, за исключением тех случаев, когда размеры их очень велики. Причины этого заключаются в том, что большая часть лучей, посылаемых к ним Солнцем, разбрасывается во все стороны и как бы рассеивается преломлением, которому они подвергаются в той части небосвода, по которой проходят. Например, комета CD (рис. 16) получает от Солнца, обозначенного буквой S, все лучи, проходящие между линиями SC и SD, и посылает к Земле все лучи, проходящие между линиями СТ и DT. Между тем надо думать, что комета EF получает от того же Солнца только те лучи, которые находятся между линиями SGE и SHF, потому что, с большей легкостью проходя от S к поверхности GH (которую я рассматриваю как часть небосвода), чем за пределы этой поверхности, лучи должны подвергаться сильному рассеивающему преломлению. Это заставляет часть лучей отклониться от своего пути к комете EF, потому что эта поверхность выгнута в сторону Солнца; как вы знаете, она должна выгнуться, когда к ней приближается комета. Но даже если бы эта поверхность была совершенно плоской или даже выгнутой в противоположную сторону, большая часть лучей, которые попадают на нее от Солнца, были бы рассеяны преломлением если и не при движении к комете, то при обратном движении от нее к Земле. Например, если предположить, что (рис. 16) часть неба IK есть часть сферы, центр которой находится в точке S, то лучи SIL и SKM не должны совершенно искривляться, направляясь к комете LM, но они должны сильно искривляться, возвращаясь оттуда на Землю. Таким образом, они могут попасть на Землю только весьма ослабленными и в очень небольшом количестве. Кроме того, поскольку это может произойти, лишь тогда, когда комета еще достаточно удалена от неба, в котором находится Солнце (потому что в противном случае, если бы она находилась поблизости от него, она вогнула бы его поверхность внутрь), то из-за своей удаленности она не может также принять такое количество лучей, какое она получает, когда готова войти в это небо. Что же касается лучей, получаемых кометой от той неподвижной звезды, которая находится в центре вмещающего комету неба, то комета не может послать их к Земле, подобно тому как новая Луна не посылает к Земле лучей Солнца.

Рис. 17

Но самое примечательное у этих комет — это своеобразное преломление их лучей, обычно являющееся причиной того, что около них появляется нечто вроде хвоста или пучка (chevelure). Вы легко поймете это, если бросите взгляд на рис. 17, где S изображает Солнце, С — комету, EBG — сферу, состоящую, как сказано выше, из наиболее крупных и наименее подвижных частиц второго элемента, a DA — круг, описываемый годовым движением Земли. Представьте, что луч, идущий от С к В, проходит совершенно прямо к точке А, но, кроме того, начинает в точке В расширяться, делиться на несколько других лучей, которые расходятся во все стороны. Каждый из этих отделившихся лучей оказывается тем слабее, чем больше он удаляется от среднего луча ВА, являющегося главным и самым мощным. Луч СЕ, находясь в точке Е, также начинает расширяться и делиться на несколько других — EH, Е O, ES и др.; главный и самый мощный из этих лучей — ЕН, а самый слабый — ES. Точно так же CG проходит главным образом от G к I, но он отклоняется к S и ко всем точкам пространства, находящимся между GI и GS. Наконец, все остальные лучи, которые можно себе представить между тремя — СЕ, СВ, CG, в большей или меньшей степени сходны с каждым из этих лучей, в зависимости от того, насколько близко к каждому из них они расположены. К этому я мог бы прибавить, что все лучи должны быть несколько искривлены в сторону Солнца; однако для моей цели это не нужно, и я нередко опускаю многое, чтобы более упростить и облегчить то, что объясняю.

Предположив это преломление, можно объяснить, почему в том случае, когда Земля находится у А, люди должны видеть связанным с телом кометы С не только луч ВА, но и более слабые лучи — LA, KA и им подобные. Достигая глаз людей, лучи эти, по крайней мере тогда, когда они являются достаточно мощными, чтобы их можно было воспринимать, должны казаться короной или пучком света, равномерно распространяющимся вокруг кометы во всех направлениях, подобно тому как это видно в месте, обозначенном цифрами 11. Надо заметить, что, исходя от комет, размеры которых мы предполагаем очень большими, лучи должны быть очень мощными — более мощными, нежели лучи, идущие от планет или неподвижных звезд, которые по величине меньше комет.

Совершенно очевидно, что, когда Земля находится у М, а комета становится заметной благодаря лучу СКМ, ее пучок должен обнаружиться посредством луча QM и всех остальных, направленных к М. Таким образом, пучок света вытягивается от нее сильнее, чем прежде, на стороне, противоположной Солнцу, и меньше или даже совсем не вытягивается на стороне, обращенной к Солнцу. На рисунке это можно видеть в точке 22. По мере того как Земля удаляется от точки А, пучок лучей на стороне, противоположной Солнцу, вытягивается все сильнее и сильнее; он постепенно теряет форму короны и образует длинный хвост, влекомый кометой. Когда, например, планета находится около D, лучи QD, VD и другие делают комету похожей на 33. Если же Земля находится около О, то из-за лучей V О, E О и других комета кажется еще более длинной. Наконец, когда Земля находится около Y, комета становится уже невидимой вследствие промежуточного положения Солнца; однако лучи VY, EY еще показывают ее хвост в виде полосы или огненного копья вроде того, который имеется в точке 44. Нужно еще заметить, что сфера EBG, как и все, что в ней заключено, никогда не бывает в точности круглой. Из этого можно сделать вывод, что хвосты, или огненные копья, никогда не будут казаться ни совершенно прямыми, ни находящимися в одной плоскости с Солнцем.

Относительно преломления, являющегося причиной всего этого, я замечу, что природа его весьма своеобразна и оно сильно отличается от преломления, наблюдаемого в других местах. Однако вы легко можете убедиться, что оно должно происходить так, как я описал. Рассмотрите шарик Н (рис. 18), который, если толкнуть его в сторону I, толкает в том же направлении все шарики, лежащие под ним, вплоть до шарика К. Последний же, будучи окружен другими, меньшими шариками, такими, как 4, 5, 6, толкает к I только шарик 5, а шарик 4 он толкает к L, шарик 6 — к М. То же самое происходит и с остальными. Средний шарик 5 он толкает гораздо сильнее, чем 4 и 6 и им подобные, расположенные по бокам. Шарик N, получающий толчок в сторону L, также толкает маленькие шарики 1, 2, 3: первый — к L, второй — к I, а третий — к М, но с той разницей, что сильнее всего он толкает 1, а не средний, т. е. 2. Маленькие шарики 1, 2, 3, 4 и т. д., получающие толчки одновременно от шариков N, Р, Н, Р и т. д., мешают друг другу так же легко двигаться в стороны L и М, как и в сторону I. Следовательно, если бы все пространство LIМ было наполнено такими небольшими шариками, то лучи их действия распределились бы так, как это происходит с лучами комет внутри сферы EBI (рис. 17).

Рис. 18

Если в ответ на это вы скажете мне, что неравенство между шариками N, Р, Н, Р и 1, 2, 3, 4 и т. д. гораздо больше, чем предполагаемое нами неравенство между частицами второго элемента, составляющими сферу EBG, и частицами, находящимися непосредственно под ними, но ближе к Солнцу, то я отвечу на это, что отсюда нельзя сделать никакого вывода, кроме того, что такое преломление бывает не только в сфере EBG и сфере, образованной шариками 1, 2, 3, 4 и т. д. Так как между частицами второго элемента, находящимися непосредственно под EBG и расположенными еще ближе к Солнцу, снова оказывается неравенство, то это преломление становится все большим по мере распространения лучей. В результате этого, когда лучи доходят до сферы Земли DAF, оно может оказаться столь же большим, как и преломление действия, толкающего маленькие шарики 1, 2, 3, 4 и т. д., или даже еще большим. Вполне возможно, что частицы второго элемента, находящиеся около сферы Земли DAF, по сравнению с частицами у сферы EBG столь же малы, как и шарики 1, 2, 3, 4 по сравнению с шариками N, Р, Н, Р…7