Актуальная бесконечность

We use cookies. Read the Privacy and Cookie Policy

Актуальная бесконечность

Вот первый довод:

1. Актуальная бесконечность существовать не может.

2. Безначальный ряд временных событий представляет собой актуальную бесконечность.

3. Следовательно, безначальный ряд временных событий не может существовать.

Рассмотрим вначале первую посылку: Актуальная бесконечность не может существовать.

Что я имею в виду под актуальной бесконечностью? Множество объектов считается актуально бесконечным, если часть этого множества равна его целому. Так например, какой рад длиннее:

2,3,4,5,6,… или 0,1,2,3,4,5,6,…?

По общепринятым математическим представлениям, эти ряды эквивалентны, потому что они оба актуально бесконечны. Это кажется странным: ведь в правом ряду есть два числа, отсутствующие в левом. Но это лишь показывает, что в актуально бесконечном множестве часть (левый ряд) равна целому (правый ряд).

По той же причине математики утверждают, что ряд чётных чисел равен ряду натуральных чисел — несмотря на то, что ряд всех натуральных чисел содержит все чётные плюс бесконечное число нечётных чисел.

1,2,3,4,5,6,7,8,…

2, 4, 6, 8,…

При этом не надо смешивать понятия актуальной бесконечности — и потенциальной бесконечности.[24]

По мнению великого немецкого математика Давида Гилберта, главное различие между актуальной и потенциальной бесконечностью заключается вот в чём. Потенциально бесконечное есть всегда нечто возрастающее и имеющее пределом бесконечность, тогда как актуальная бесконечность — это завершённое целое, в действительности содержащее бесконечное число предметов.[25]

Интересным примером этих двух типов бесконечности могут послужить два ряда событий: произошедших до и после какой-либо точки в прошлом.

Возьмём, например, момент в 1845 г., когда родился Георг Кантор, отец теории множеств.

В обоих случаях мы имеем в виду события, действительно случившиеся.

Точка, называемая «настоящее время», разумеется, не стоит на месте, а скользит вперёд. (По сути дела, это граница между событиями уже реализованными и ещё не реализованными.) Поэтому количество событий «после» (т. е. между 1845 г. и настоящим временем), хотя и в каждый конкретный момент конечное, постоянно возрастает. Оно никогда не реализовано до конца, и потому потенциально бесконечно.

Но ряд событий «до» полностью реализован, завершён и не возрастает. И если атеисты правы, и у Вселенной не было начала, то такой ряд бесконечен. Бесконечен актуально, реально.

В ходе наших рассуждений очень важно эти два понятия (актуальной и потенциальной бесконечности) не путать.

Второе пояснение касается слова «существовать». Когда я говорю, что актуальная бесконечность не может существовать, я имею в виду — существовать в реальном мире, или существовать не только в уме. Я вовсе не отрицаю законность использования понятия актуальной бесконечности в математике (оперирующей лишь мысленной реальностью). Я лишь утверждаю, что актуальная бесконечность не может существовать в физическом мире звёзд, планет, камней и людей.

Несколько примеров покажут абсурдность такого допущения.

Допустим, что существует библиотека, содержащая реально бесконечное число книг. Представим себе, что книги в ней только двух цветов, чёрного и красного, и что они стоят на полках, чередуясь: чёрная, красная, чёрная, красная, и т.д. Если кто-то скажет нам, что число чёрных книг равно числу красных, мы, вероятно, не удивимся. Но поверим ли мы, если нам скажут, что число чёрных книг равно числу чёрных и красных книг вместе? Ведь в таком собрании мы обнаружим все чёрные книги плюс бесконечное число красных книг!

Или же представим себе, что у нас есть книги трёх цветов, четырёх, пяти или даже ста. Поверим ли мы, что книг одного цвета столько же, сколько всего книг в библиотеке?

Или вообразите, что в библиотеке бесконечное число цветов книг. Можно предположить, что в бесконечно большой библиотеке будет приходиться по одной книге на каждый из бесконечного числа цветов. Но это не обязательно так. Как утверждают математики, если число книг действительно бесконечно, то на каждый из бесконечного числа цветов может прийтись и бесконечное количество книг. Таким образом мы получаем бесконечность бесконечностей! И тем не менее, если мы возьмём все книги всех цветов, их окажется не больше, чем книг только одного цвета.

Продолжим наши рассуждения. Предположим, что у каждой книги на корешке отпечатан номер. Поскольку библиотека реально бесконечна, каждое возможное число отпечатано на какой-либо из книг. Поэтому мы не можем добавить к библиотеке ещё одну книгу, ибо какой номер ей дать? Всё номера уже заняты. Таким образом, новой книге нельзя дать номера! Но это абсурд, так как в действительности предметы всегда можно нумеровать.

Если бы бесконечная библиотека существовала, то к ней невозможно было бы добавить ещё одну книгу. (Не потому ли, что она уже включала бы все существующие книги, и новую просто неоткуда было бы взять? Нет, ведь достаточно вырвать по листку из каждой книги первой сотни, склеить их вместе, поставить эту новую книгу на полку, и всё — библиотека пополнена!) Поэтому напрашивается единственно возможный вывод: библиотека, актуально бесконечная, — существовать не может.

Но предположим, что мы можем пополнить эту библиотеку, и я ставлю книгу на полку. По утверждению математиков, число книг в библиотеке осталось прежним. Как это может быть? Ведь мои опыт говорит: если я поставил книгу на полку, то там стало книгой больше, а если снял, то одной меньше.

Мне легко вообразить себя, ставящего и снимающего эту книгу. Должен ли я впрямь всерьёз поверить, что когда я добавляю книги, их число не увеличивается, а когда убираю — не уменьшается? А если я добавлю к этой библиотеке бесконечное число или даже бесконечность бесконечностей книг? Неужели и теперь в библиотеке ни на одну книгу не больше, чем прежде? Мне в это трудно поверить. А вам?

А теперь давайте, наоборот, выдавать книги из библиотеки. Предположим, в понедельник мы выдали книгу номер восемь. Разве число книг не уменьшилось на одну?

Во вторник — выдадим все книги с нечётными номерами. Ушло бесконечное число книг, но математики скажут, что в библиотеке книг меньше не стало.

Допустим, что в среду мы выдали книги за номерами 4, 5, 6,.. и до бесконечности. Единым махом библиотека практически вся опустела, бесконечное число книг сведено к конечному: к трём. Но позвольте, ведь мы на этот раз выдали столько же книг, что и во вторник! Почему же такая разница? И кто поверит, что такая библиотека может на самом деле существовать?

Все эти примеры иллюстрируют тот факт, что актуальная бесконечность не может иметь места в физическом мире. Я вновь хочу подчеркнуть: это ничем не грозит теоретической системе, введённой в современную математику Г. Кантором. Больше того: даже такие энтузиасты математических теорий бесконечного, как Д. Гилберт, охотно соглашаются с тем, что понятие актуальной бесконечности — это только идея, не имеющая никакого отношения к реальному миру.[26] Поэтому — мы вправе заключить: актуальная бесконечность существовать не может.

Вторая посылка: Ряд событий во времени, не имеющий начала, представляет собой актуальную бесконечность.

Под «событием» я подразумеваю любую перемену, происходящую в физическом мире. То есть: если ряд прошлых событий (или перемен) всё время уходит в прошлое и никогда не имеет начала, то в этом случае, взятые все вместе, эти события составляют актуально бесконечное множество.

Допустим, мы спрашиваем, откуда появилась такая-то звезда. Нам отвечают, что она появилась в результате взрыва звезды, существовавшей до этого. Тогда мы спрашиваем, откуда появилась та звезда? Она тоже возникла из звезды, существовавшей до неё. А эта звезда откуда? Из другой, предыдущей звезды и так далее. Этот ряд звёзд будет примером безначального во времени ряда событий.

Тогда, если Вселенная существовала всегда, ряд всех событий прошлого в их совокупности составит актуальную бесконечность: потому что каждому событию в прошлом предшествовало другое событие. Таким образом, ряд прошлых событий будет бесконечным.

Но не будет ли он потенциально бесконечным? Нет, ибо мы видели, что прошлое завершено и актуально, — лишь будущее может быть охарактеризовано как потенциально бесконечное. Поэтому представляется очевидным, что безначальный ряд событий во времени является актуальной бесконечностью.

Это приводит нас к нужному заключению. безначальный ряд событий во времени существовать не может. (Мы установили ранее, что актуально бесконечное не может существовать в действительности. И если безначальный ряд временных событий есть актуальная бесконечность, то такой ряд не может существовать.)

Значит, ряд всех событий прошлого обязан иметь начало. Но ведь история Вселенной и есть ряд всех свершившихся событий! Поэтому у Вселенной должно быть начало.

Несколько примеров пояснят этот аргумент.

Мы знаем, что если бы актуальная бесконечность могла существовать в действительности, к ней невозможно было бы ничего прибавить. Но к ряду событий во времени происходят добавления каждый день — или, по крайней мере, нам так кажется. Если же этот ряд актуально бесконечен, то число событий, случившихся до настоящего момента, — не больше, чем, скажем, число событий до 1789 года или до любой другой точки в прошлом, сколь угодно далёкой.

Ещё пример. Вообразим, что вокруг Солнца уже целую вечность вращаются две планеты. Допустим, что одна проходит свою орбиту за три года, другая — за год. Таким образом, на каждый оборот одной приходятся три оборота другой. Вопрос: если они движутся вечно, которая из этих планет сделала больше орбитных оборотов? Ответ: обе сделали одинаковое число оборотов. Но это явный абсурд, ведь здравый смысл подсказывает: чем дольше они вращаются, тем сильнее увеличивается разрыв. Как же может число оборотов быть равным?

Или, наконец, допустим, что нам повстречался инопланетянин. Он утверждает, что целую вечность вёл счёт, и теперь кончает:…5, 4, 3, 2, 1, 0. Но мы можем спросить: почему он не кончил считать вчера? Или даже год назад? Неужели ему не хватило времени? Как же так? Ведь и до прошлого года прошло бесконечное число лет — значит, времени у него было достаточно. Что же получается? Как бы далеко в прошлое мы ни углубились, мы никогда не застигнем его за счетом. Следовательно, не может быть истинным утверждение, что он занят этим всю вечность.

Эти примеры подчёркивают абсурдность идеи безначального ряда событий во времени. Поскольку такой ряд является актуально бесконечным, а актуальная бесконечность существовать не может, то и этот ряд невозможен. Это значит, что Вселенная когда-то начала своё существование, что и требовалось доказать.