Загадка языка
Загадка языка
Литература, как мы уже говорили, живет в языке, который, в свою очередь, представляет собой универсум, размещенный в культуре, откуда на него изливается свет значений. Царство, где господствует система языка, простирается от пустоты формальных доказательств до полноты смыслов, и можно сказать так: в этом царстве один полюс, математический, характеризуется точностью без понимания; для другого же, напротив, характерно понимание при неточности формулировок. И все это даже не в особенно-то переносном смысле. На самом деле математик платит высокую цену за полную точность, потому что — по словам самых компетентных специалистов — в сущности, неизвестно, чем занимается эта блестящая отрасль науки. Если, таким образом, где-то еще есть манихейство с его коварной ересью чистой релятивности, то сохранилось оно именно здесь. Потому что мир, согласно этой релятивности, так устроен (имеет такие свойства), что или можно говорить со сколь угодно большой точностью, но только не о нем; или же как только мы начинаем говорить о нем — то обнаруживается, что у нас столько же понимания, сколько и неточности, неустранимой из самой лексики этнических языков. В этом полярном противопоставлении, должно быть, скрыта какая-то «страшная тайна» и, наверное, много понадобилось бы времени, чтобы приоткрыть над ней хоть краешек завесы.
Согласно воззрению эмпириков, математика возникает как результат взаимодействия человека с миром, предоставляющим нашему вниманию объекты, которые могут быть исчислены и которые подчиняются операциям абстрагирования, будь то в геометрии или в арифметике. Язык делает возможным выполнение таких операций, однако у истоков процесса формирования языка «еще в нем математики нет». Она вводится в него как бы извне, по мере накопления опыта. Согласно же противоположному воззрению, математика — это раскрытие неких «математических объектов» — модусов бытия, несводимых ни к какому кругу эмпирических свидетельств. И однако допустимо утверждать, что невозможно возникновение такого языка, который — причем с самого начала своего существования — не имплицировал бы всей математики. Согласно первому, эмпирическому воззрению, язык в ходе своего существования — благодаря повторяемым из поколения в поколение актам опыта — как бы научается тому, что «математика возможна». Язык — лишь посредник, вводящий соответственную информацию в мозг. При этом получаемая мозгом информация образует в нем (в мозгу) реальное приращение информации. Язык — медиатор между миром, который учит человека математике, и человеком. Согласно второму воззрению, математическое творчество представляет собой результат работы мозговых механизмов, которые нельзя отождествлять с нейронным аппаратом. Этот аппарат предназначен для решения задач типично адаптивных, то есть связанных с выживанием. Вместе с тем генезис механизмов, порождающих математику, оказывается явлением поистине чудесным: они возникают неизвестно как, неизвестно почему и зачем. Они представляют собой поразительный подарок, полученный человеком от эволюции.
Математические исследования, которые я не могу здесь подробно воспроизводить, показывают, что версию эмпирического происхождения математики невозможно отстаивать до конца. Вместе с тем отказ от этой версии, по-видимому, неизбежно заставит нас перейти на позиции платонизма. Однако дело можно представить так, что математика «не содержит» в себе ни чувственно воспринимаемый мир, ни индивидуальный мозг. Зато ее «содержит в себе» язык как таковой, но содержит таким образом, что она как бы «скрыта» от тех, кто им пользуется. Математика в таком случае рождается одновременно с языком, будучи укоренена в сфере его флективных уровней и ограничена их закономерностями и структурой языкового синтаксиса. Доказана принципиальная возможность создания систем (машин), способных к самовоспроизводству. Но это доказательство, впервые предложенное Дж. фон Нейманом, ничего не говорит о том, что такие машины-«прокреаторы» с необходимостью должны по своей сложности превосходить некоторый определенный порог. Дело в том, что неймановское доказательство не стоит ни в каком доступном определению отношении к феноменалистским тезисам термодинамики и прежде всего к законам энтропии. Термодинамический принцип, запрещающий такие состояния сравнительно простых систем, когда те не только могут в информационном плане не деградировать, но наоборот, способны создавать системы более сложные, чем они сами, — этот принцип выступает в области физики главным возражением против возможности существования каких бы то ни было явлений, в которых происходит нечто термодинамически невозможное. А именно таковы типичные эволюционные явления. Необходимо предположить, что доказательство возможности автопрокреации должно быть дополнено установлением ряда констант, определяющих порог сложности, начиная с которого более сложные системы уже не подчинены закону обязательной «хаотизации», то есть возрастания энтропии, потому что становятся способными специфическим образом «кормиться» за счет окружающей среды. Они ассимилируют присутствующую в ней упорядоченность, чтобы ею подкрепить свою собственную. Замечу, что пользующиеся языком не отдают себе отчета в степени его сложности. Я не знаю соответствующих оценочных расчетов и не знаю, выполнял ли их кто-нибудь, но полагаю, что развитый язык, вполне активно функционирующий в своих дискурсах, близок в чисто структурном отношении, по исчислению своей сложности, к языку наследственной передачи информации. А этот последний уж наверняка переступил означенный порог сложности, о чем мы знаем из того, что сами существуем и что фактом является эволюция живого, в ходе которой из более простых состояний образуются более сложные. Этнический язык имело бы смысл рассматривать как очередной «рывок» эволюционного процесса в том аспекте, который касается преодоления «порога сложности». Математика возникает в рамках языка как некое «оперативное средство поддержки». Она не отображает структуру мира непосредственно, в плане эмпирических контактов индивидуума с миром, но опосредованно все же реализует такое отображение. В самом деле, наличные в языке механизмы, генерирующие математику, являются результатом активного стремления обобщать, которое, в свою очередь, возникает в языке в ходе его взаимодействия со средой. Тем не менее процессы «выявления», «призывания на помощь» математики не представляют собой непосредственного распознавания таких свойств среды, которые «прямо подводят» к математике (а такие свойства есть: например, исчислимость реальных объектов). Напротив, эти процессы являются «активным извлечением» из языка уже implicite содержащейся в нем математики, ее «выведением наружу», ее экстрагированием из языка. Поэтому нельзя создать язык, не создав одновременно и математику. Правда, она не обязательно будет именно той математикой, которую мы уже разработали и которой пользуемся — в ее исторически развившихся формах и в ее современном облике. Если направление развития математики уже на ранних стадиях отклонится от имевшего место у нас и от рано принятых нами принципов, то есть если у этого развития будут иные стартовые условия, тогда может развиться и какой-нибудь иной род математики. «Иной» — не в тривиальном смысле: тривиальные отличия ограничиваются, например, принятием двенадцатиричной системы записи чисел вместо десятичной. Иначе говоря, математика — результат работы, раскрывающей отношения, которые (в своей форме именно как отношений) не находятся ни в голове индивидуума, ни в мире, но только, во-первых, в том, что их раскрывает (в языке), и, во-вторых, в том, что через эти отношения раскрывается. Если так понимать математику, то она ни однозначно аналитична, ни синтетична, и уже просто ни в какой мере не сводима к единичным явлениям типа «контакта индивидуума с миром». Математическое суждение не исходит «просто из внешнего мира», следовательно, оно не синтетично. Вместе с тем оно не образует чистой тавтологии — следовательно, его нельзя вывести и из информационно бесплодного действия сингулярных механизмов сознания; поэтому оно не является и полностью аналитическим. Напротив, на эмпирической стадии того или иного действия, в вариациях состояний среды математическая операция находит себе — через свою эффективность — sui generis «подтверждение» своей корректности.
К этой проблеме можно подойти также и в аспекте теории самообучения. В ней на современном этапе не используется понятие «порога сложности», а ограничения, накладываемые на прирост знания, доставляемый наукой, носят, вообще говоря, тривиальный характер. Например, «степень глубины полученного знания ограничена информационной емкостью памяти». И все же дело не обстоит так, будто конечный результат обучения вообще не зависит от начальных условий, исходно заданных организацией обучающегося субъекта. Между человеком, который учится, и тем, что он учит, возникает своеобразная связь: даже обучаясь достаточно долгое время, нельзя «умнеть бесконечно», хотя бы уже потому, что будет исчерпана емкость резервуаров памяти. Обучение, не предусматривающее предела, предполагает присутствие (в обучаемой системе) если не некоторой безграничной разнородности, то по крайней мере организации, перешедшей определенный специфический порог. Если этот порог не достигнут, обучение быстро должно прекратиться. Если он превышен, обучение, по-видимому, будет приобретать черты процесса если не безграничного, то, во всяком случае, характеризуемого степенью универсальности, несравнимой с состояниями, которые развились из «подпороговой сложности». Таким образом, математическое обучение оказывается возможным только в тех случаях, когда исходная организация выше «пороговой».
Эта дилемма, связанная с «сущностью математики», является типично философской, однако в принципе, по-видимому, она доступна и эмпирическому исследованию, потому что «порог сложности» каким-то образом определяется свойствами реального мира — законами его природы.
Заранее неизвестно даже, является ли этот «порог» единственным. Ведь может быть и так, что «барьер сложности», переход которого обучаемой системой делает возможным ее «неограниченное обучение», неодинаково расположен для различных типов организации «обучаемых субъектов». Не исключено, что таких барьеров много, и человек, достигнув в развитии своего сознания одного из них (путем конструирования науки), смог бы и перейти его, создав «усилители разума» и «амплификаторы интеллекта». Это было бы подобно тому, как он преодолел «энергетический барьер», строя машины, которые сделали его независимым в энергетическом плане от силы его собственных мышц.
Итак, у всей этой проблематики по необходимости есть моменты, общие с термодинамикой, как то полагал и Дж. фон Нейман, рассуждая о связях термодинамики и логики. Эти моменты связаны с тем, что — с одной стороны — чтобы добыть мудрость в форме, например, науки, надо уже исходно «быть мудрым», то есть располагать соответствующей организацией в виде адекватной «надпороговой сложности». С другой стороны — с тем, что «открыть» математику человек может, только если уже ее «содержит в себе», в неявном виде.
Поскольку же язык вместе со «спрятанной в нем» математикой возникает как общественное явление, нельзя считать правильным исследование относящихся к этим сферам феноменов как чего-то изолированного. Язык не представляет собой всего лишь «овнешненный нейронный код» системы. Скорее (или в то же время) он есть код, который возникает межличностно и основывается на системной организации человеческого коллектива. Коллектив этот является как бы организмом «высшего информационного уровня», а язык выполняет в этом организме коммуникативные функции. Мы здесь лишь слегка наметили данную проблематику. Для ее верификации следует опираться на процессы, моделирующие генезис языка, или на концепцию формирования языка в среде автоматов, различно программированных в своих исходных состояниях. Иными словами, следует опираться на дисциплину, которую можно было бы назвать моделирующей экспериментальной эпистемологией. Потенциальные ее возможности для развития человеческого знания исключительно велики, потому что такая дисциплина сделала бы возможным конструирование искусственных сред с точно известными и оптимальными свойствами. Гомеостат, исследующий такую синтетическую среду, представляет собой модель отношения «субъект — объект». Создание этой дисциплины было бы делом беспрецедентным, потому что здесь нет ничего общего с известными методами создания искусственных сред для организмов, чем занимается, например, экспериментальная зоопсихология. Лабиринт психолога — фрагмент реального мира. Напротив, у «лабиринта», смоделированного дигитально, есть только такие признаки, которые были предвидены соответствующей компьютерной программой. Быть может, эта — постулированная здесь — исследовательская дисциплина, которая станет троянским конем эмпирии, введенным в стены философской крепости, появится на свет как запоздалый результат трудов младшей сестры бионики, которую сегодня называют «психоника».
Как известно, в математике действительно господствует та самая специализация, которая превращает отдельные науки в лучи, все более расходящиеся, отдаляющиеся друг от друга. Однако вместе с тем в математике можно, поднимаясь на все более высокие уровни абстракции, зачаровываться видимым выявлением подобия структур, какие при сопоставлениях на низших уровнях не были заметны. При достаточно высокой абстракции алгебра оказывается сходна с топологией, теория групп встречается с неожиданными родичами в совсем других отраслях науки. Но нам сейчас важна не математика. Сходства, как всеобщие законы, открываемые посредством аналогии, представляют собой опредмеченные акты внедрения неких систем в целостность высшего порядка (коль скоро это оказывается возможным). В формах деятельности, подвергшихся классифицированию таким путем, проявляются черты взаимного общего сходства. Примерами могут служить великие системы реальности: биосфера планеты и социодинамические комплексы; и их подсистемы — язык наследственности (в биосфере) и этнические языки (в социодинамической сфере). В гуманитарных областях такой систематический подход сегодня еще не удается применить, если не считать столь громоздких, столь эскизных попыток, что они заслуживают разве что названия фантазии или пустой грезы. Ученым, занятым конкретной работой, не становится легче, если им скажут, что через двести лет их современная аппаратура будет неким любопытным памятником старины, настоящей допотопной рухлядью. В науке методы надо конструировать, а не только возвещать «гласом вопиющего в пустыне» их пришествие в будущем. Однако и предварительная работа все же должна быть выполнена. Единству исследовательского подхода должно предшествовать единство языка описания. Так что не из упрямства, но только для пользы дела мы столь настойчиво пытались здесь применить к гуманитарным сферам чуждый им язык, который в них представляется незваным гостем, прибывшим из инструментальной области. Пусть мы сегодня смогли дать лишь неуклюжую попытку перевести на этот язык типичную гуманитарную проблематику. Хотя бы и такое действие, по-видимому, является действительно насущным.