3.22. Спасет ли вычислительную модель разума хаос?
3.22. Спасет ли вычислительную модель разума хаос?
Вернемся ненадолго к вопросу о хаосе. Хотя, как неоднократно подчеркивается в этой книге (в частности, в §1.7), хаотические системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что феномен хаоса может иметь весьма значительное отношение к деятельности мозга. В представленных выше рассуждениях я опирался, с одной стороны, на обоснованное, как мне кажется, предположение, согласно которому любое хаотическое вычислительное поведение можно без существенной потери функциональности заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправданное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоняющееся от чистой случайности. (Иногда для описания сложного неслучайного поведения{47}, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соответствующих ситуациях хаотические системы. Хаотической системе в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.
И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обойти неутешительное заключение, к которому мы пришли в предыдущем параграфе. В представленных выше рассуждениях эффективная хаотическая неслучайность (т.е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» поведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмов M. Та же аргументация применима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомянутых механизмов. Впрочем, некоторые случайные элементы (например, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы оперировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество возможных альтернативных робото-историй. Однако само хаотическое поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических примерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в данном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в ?M-утверждениях роботов. Даже если ансамбль включает в себя всего одну «историческую линию» сообщества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения ?M-статуса такие ошибки будут очень быстро устраняться либо самими их виновниками, либо какими-то другими роботами сообщества. В ансамбле умеренного размера, составленном из подлинно случайных элементов, устранение ошибок будет происходить более эффективно, при дальнейшем же расширении ансамбля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь существенного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.