6.12. Новый критерий
6.12. Новый критерий
В этом параграфе я сформулирую новый критерий{82} гравитационной редукции вектора состояния, существенно отличный от того, что был предложен в НРК, но близкий к некоторым идеям, высказанным в последнее время Диози и другими учеными. Причины, побудившие меня к поискам связи между R-процедурой и гравитацией, остаются в силе, однако моя теперешняя гипотеза получила с тех поп дополнительную теоретическую поддержку с другой стороны. Более того, мне удалось избавиться от некоторых концептуальных проблем, присущих прежнему варианту, и сделать его более удобным для применения. В НРК я предлагал отыскать критерий, который позволял бы определить, когда два состояния (каждое со своим гравитационным полем — т.е. пространством-временем) оказываются слишком различными для того, чтобы продолжать сосуществовать в квантовой линейной суперпозиции. Соответственно, на этом этапе должна была происходить редукция R. Нынешняя идея несколько отличается от прежней. Мы больше не ищем некую абсолютную меру гравитационной разницы между состояниями, чтобы выяснить с ее помощью, в какой момент состояния разойдутся настолько, что суперпозиция станет невозможна. Вместо этого, мы рассматриваем суперпозицию сколь угодно разных состояний как нестабильную — в том смысле, в каком нестабильно, например, ядро урана — и вводим величину скорости редукции вектора состояния, каковая скорость определяется как раз степенью разности состояний. Чем больше разность, тем выше скорость редукции.
Для наглядности применим новый критерий сначала к конкретной ситуации, описанной в §6.10, хотя его несложно обобщить и на многие другие случаи. Нас, в частности, интересует энергия, необходимая в упомянутой ситуации для того, чтобы сдвинуть одну копию объекта относительно другой, с учетом лишь гравитационных эффектов. Итак, мы представляем себе, что два объекта (две массы) первоначально занимают один и тот же объем пространства (см. рис. 6.6); затем одна копия объекта начинает медленно удаляться от другой, уменьшая по мере движения степень взаимопроникновения, пока, наконец, не произойдет полное их разделение, т.е., в контексте рассматриваемой ситуации, пока не будет достигнута суперпозиция состояний. Взяв величину, обратную затраченной на эту операцию гравитационной энергии (в абсолютных единицах[49]), мы получим приближенное время (также в абсолютных единицах), по истечении которого произойдет редукция состояния, в результате которой объект из состояния суперпозиции самопроизвольно и скачкообразно перейдет в то или иное локализованное состояние.
Рис. 6.6. Для того чтобы найти время редукции ?/E, представим себе объект в виде двух расходящихся копий и вычислим энергию E, затрачиваемую на такое расхождение, учитывая лишь гравитационное притяжение объектов.
Если в качестве объекта был выбран шар с массой m и радиусом a, то для энергии мы получим величину порядка m2/a. Вообще говоря, действительное значение энергии зависит еще и от того, на какое расстояние перемещается объект, однако в данном случае это расстояние очень незначительно, поскольку в окончательной конфигурации две копии объекта расходятся лишь настолько, чтобы не перекрывать друг друга. Дополнительная энергия, необходимая для перемещения объекта от точки касания на любое расстояние (вплоть до бесконечности), есть величина того же порядка (коэффициент 5/7), что и энергия, затрачиваемая на перемещение от полного взаимоперекрытия до точки касания. Таким образом, пока нас интересует лишь порядок величины; вкладом в общую энергию, вносимым расхождением копий объекта уже после разделения, можно пренебречь, коль скоро разделение (по большей части) таки состоялось. Согласно такой схеме, время редукции составит величину порядка
a/m2
(в абсолютных единицах) или, очень приближенно,
1/(20p2a5),
где p — плотность объекта. То есть в случае объекта обычной плотности (скажем, капли воды) время редукции примерно равно 10186/a5.
В определенных простых ситуациях эта схема дает вполне «приемлемые» значения. Возьмем, например, нуклон (протон или нейтрон): если a — это «радиус сильного взаимодействия» 10—13 см, что в абсолютных единицах составляет почти 1020, а масса m приблизительно равна 1019, то время редукции будет что-то около 1058, т.е. более десяти миллионов лет. То, что это время велико, обнадеживает, поскольку на отдельных нейтронах эффекты квантовой интерференции наблюдались экспериментально{83}. Получи мы очень малое время редукции, наши рассуждения вошли бы в противоречие с результатами этих наблюдений.
Объекты более «макроскопические», скажем, мельчайшие водяные капли радиуса 10—5 см, дадут время редукции порядка нескольких часов. Если увеличить радиус до 10—4 см (1 микрон), то время редукции уменьшится до приблизительно двенадцатой доли секунды; при радиусе 10—3 см время редукции составит менее одной миллионной секунды. В общем случае, при рассмотрении объекта в суперпозиции двух пространственно разделенных состояний мы просто определяем, какую энергию необходимо затратить на такое разделение, учитывая при этом лишь гравитационное взаимодействие между двумя «участниками» суперпозиции. Величина, обратная этой энергии, представляет собой нечто вроде «периода полураспада» суперпозиции состояний. Чем больше энергия, тем меньше время, в течение которого может существовать суперпозиция.
В реальной экспериментальной ситуации чрезвычайно сложно добиться того, чтобы объекты в квантовой суперпозиции не оказывали возмущающего воздействия на вещество окружения (образуя тем самым сцепленное с ним состояние), вследствие чего приходится учитывать и гравитационные эффекты, связанные с окружением. Такая необходимость возникает даже в тех случаях, когда возмущение не вызывает значительного макроскопического перемещения масс в окружении. Существенными могут оказаться даже самые незначительные перемещения отдельных частиц — хотя здесь для редукции обычно требуются несколько большие общие массы, нежели в случае перемещения макроскопического «объекта».
Для того, чтобы наглядно продемонстрировать, какой эффект возмущение такого рода может оказать на предлагаемую схему, заменим перемещающее устройство в вышеописанной идеализированной экспериментальной ситуации неким объемом жидкости, которая просто-напросто поглощает фотон, если тот ухитряется пройти сквозь зеркало (см. рис. 6.7), так что теперь роль «окружения» отводится уже самому объекту. Вместо линейной суперпозиции двух состояний, различных на макроскопическом уровне в силу того, что одна копия объекта вся целиком перемещается относительно другой, мы теперь рассматриваем всего лишь различие между двумя конфигурациями взаимного расположения атомов, причем смещение одной конфигурации относительно другой носит случайный характер. Можно ожидать, что для объема обычной жидкости радиуса а мы получим время редукции порядка 10130/a3 (точная величина будет зависеть до некоторой степени от первоначальных допущений), что существенно отличается от 10186/a5, времени редукции в опыте со взаимным перемещением объектов. То есть редукция в случае перемещения объектов целиком требует меньших масс, нежели редукция в случае возмущения атомных конфигураций. Тем не менее, в соответствии с нашей схемой редукция произойдет и здесь, при полном отсутствии какого бы то ни было макроскопического движения.
Рис. 6.7. Предположим, что пропущенный сквозь зеркало фотон не перемещает сферический объект, а всего лишь поглощается неким объемом жидкости.
В §5.8 при обсуждении квантовой интерференции мы рассматривали экспериментальную установку с материальным препятствием, перехватывающим фотонный луч. Простого поглощения — или даже потенциальной возможности поглощения — фотона таким препятствием вполне достаточно для редукции R, несмотря на то, что при этом не происходит ничего макроскопического, что можно было бы реально наблюдать. Иначе говоря, достаточно сильное возмущение окружения, сцепленного с рассматриваемой системой, само по себе способно вызвать R, что отсылает нас к более традиционным FAPP-процедурам.
В самом деле, практически любой реальный процесс измерения почти наверняка сопровождается возмущением большого количества микроскопических частиц окружения. Согласно выдвигаемым здесь предположениям, часто доминантным эффектом оказывается именно это возмущение, а вовсе не макроскопическое движение массивных объектов, как в описанной выше ситуации с перемещением шара. Если эксперимент не подразумевает особо тщательного контроля за окружением, любое макроскопическое перемещение макроскопического же объекта весьма существенно возмущает окружающую среду, и вполне возможно, что именно время редукции окружения — величина порядка 10130/b3, где буквой b обозначен радиус области окружения, сцепленной с рассматриваемым объектом (плотность окружения принимается равной плотности воды) — оказывается в данном случае доминирующим (т. е. гораздо меньшим, нежели время редукции 10186/a5, характерное для собственно объекта). Например, если радиус b возмущенного окружения составляет всего лишь десятую долю миллиметра, то только по одной этой причине время редукции сократится до миллионной доли секунды.
Такая картина во многом близка к традиционному описанию, о котором мы говорили в §6.6, однако теперь у нас имеется вполне определенный критерий, позволяющий точно сказать, когда действительно происходит редукция в данном окружении. Вспомним возражения, высказанные в §6.6 против допущения, что традиционный FAPP-подход адекватно описывает действительную физическую реальность. С введением такого критерия эти возражения больше не имеют силы. Как только окружение подвергается достаточно сильному возмущению, в этом окружении очень быстро происходит (действительно происходит) редукция — каковая редукция незамедлительно сопровождается редукцией в любом «измерительном устройстве», с каким окружение на тот момент сцеплено. Редукция эта принципиально необратима, и восстановить первоначальное сцепленное состояние невозможно, какие бы сногсшибательные достижения технического прогресса мы себе ни вообразили. Соответственно, не возникает и противоречия с тем, что реальные измерительные устройства неизменно регистрирует либо ДА, либо НЕТ — в предлагаемой картине они делают в точности то же самое.
Мне думается, что подобного рода описание может оказаться весьма полезным при изучении различных биологических процессов; в частности, с его помощью можно вполне правдоподобно объяснить, почему биологические структуры размерами много меньше микрона часто способны на самое что ни на есть классическое поведение. Поскольку биологическая система очень тесно сцеплена со своим окружением описанном выше образом, ее собственное состояние непрерывно подвергается редукции вследствие столь же непрерывной редукции этого самого окружения. С другой стороны, можно предположить, что по какой-то причине биологическая система может «предпочесть», чтобы в тех или иных обстоятельствах ее состояние не редуцировалось в течение некоторого длительного промежутка времени. В этом случае системе необходимо найти какой-нибудь эффективный способ изоляции от окружающего ее вещества. К этим соображениям мы в дальнейшем еще вернемся (§7.5).
Следует особо подчеркнуть, что энергия, определяющая время существования суперпозиции состояний, представляет собой разницу энергий, а не общую (массу-)энергию всей системы как целого. Таким образом, в тех случаях, когда перемещаемый объект хотя и велик, но передвигается на небольшое расстояние (и если он к тому же обладает еще и кристаллической структурой, т.е. составляющие его отдельные атомы не склонны к случайным блужданиям), квантовые суперпозиции могут сохраняться в течение довольно долгого времени. Такой объект может быть гораздо больше, чем рассматриваемые выше водяные капли. Поблизости вполне «безнаказанно» могут находиться и другие, гораздо большие массы — при условии, что они не сцеплены сколько-нибудь существенно с нашей суперпозицией состояний. (Эти соображения играют важную роль при конструировании различных твердотельных устройств, таких, например, как гравитационные детекторы, в которых используются когерентно осциллирующие твердые — иногда кристаллические — тела{84}.)
До сих пор порядки величин выглядят вполне правдоподобно, однако этого, очевидно, недостаточно — необходимо выяснить, выдержит ли идея более суровую проверку. Решающим доказательством могло бы послужить отыскание экспериментальных ситуаций, в которых возникают, в соответствии с предсказаниями стандартной теории, эффекты, обусловленные макроскопическими квантовыми суперпозициями, но на уровне, на котором, согласно высказанным выше предположениям, такие суперпозиции не могут существовать в течение сколько-нибудь длительного времени. Если в таких ситуациях наблюдение подтвердит традиционные квантовые предположения, то от выдвигаемых мною здесь идей придется отказаться — или, по крайней мере, серьезно их пересмотреть. Если же наблюдение установит, что суперпозиции не сохраняются, то эти идеи получат некоторое достоверное подтверждение. К сожалению, на данный момент я не располагаю сведениями о каких-либо практических предложениях о проведении соответствующих экспериментов. Многообещающие возможности для такого рода экспериментирования предоставляют сверхпроводники и такие устройства, как СКВИДы (сверхпроводящие квантовые интерференционные датчики, в основе действия которых лежат макроскопические квантовые суперпозиции, возникающие в сверхпроводниках); см. [235]. Впрочем, прежде чем приступать непосредственно к экспериментам со сверхпроводниками, предлагаемые идеи следует тщательно доработать. Суперпозиции состояний в сверхпроводнике отличаются очень незначительным смещением масс. Вместо этого здесь имеет место весьма существенное изменение импульса, каковая ситуация требует дополнительного теоретического исследования.
Необходимость в некоторой переформулировке вышеизложенной схемы возникает даже в случае простого опыта с камерой Вильсона — иначе, конденсационной камерой, присутствие заряженной частицы в которой сопровождается конденсацией крошечных капель из окружающего частицу пара. Предположим, что заряженная частица находится в квантовом состоянии, представляющем собой линейную суперпозицию состояний «частица находится где-то внутри камеры Вильсона» и «частица находится вне камеры». «Внутренняя» часть вектора состояния частицы инициирует образование капли жидкости, в то время как та часть, согласно которой частица находится снаружи камеры, ничего подобного не делает — т.е. состояние частицы теперь можно рассматривать как суперпозицию двух макроскопически различных состояний. В одном из этих состояний из пара в камере конденсируется капля, в другом — заполняющий камеру пар остается однородным. Нам же предстоит оценить гравитационную энергию, необходимую для перемещения молекул пара в каждом из образующих суперпозицию состояний. Тут, однако, возникает дополнительное осложнение: следует учесть еще и разницу между собственной гравитационной энергией капли и собственной гравитационной энергией неконденсированного пара. Для корректного описания таких ситуаций необходима иная формулировка предложенного выше критерия. Возможно, здесь следует рассматривать собственную гравитационную энергию того распределения масс, которое представляет собой разницу между распределениями масс в двух альтернативных состояниях данной квантовой линейной суперпозиции. Таким образом, ожидаемое время редукции будет определяться величиной, обратной этой собственной энергии (см. [300]). В сущности, такая альтернативная формулировка дает в точности тот же результат, что мы уже получили в предыдущих ситуациях, разве что в случае камеры Вильсона время редукции оказывается несколько иным (меньшим). Более того, существуют различные альтернативные общие схемы для определения времени редукции, которые в определенных ситуациях дают различные значения этого самого времени, но которые, тем не менее, вполне согласуются между собой в случае простой суперпозиции двух состояний перемещаемого целиком объекта (см. пример в начале этого параграфа). Первая такая схема была предложена Диози [92] (на некоторые ее недостатки указали Гирарди, Грасси и Римини [147]; они же предложили способ устранения этих недостатков). В последующих главах мы не станем останавливаться на различиях между теми или иными конкретными вариантами, но будем говорить в общем о «предположении (или критерии) из §6.12».
Для чего же нам понадобилось вводить такой особый критерий для «времени редукции»? Мои собственные первоначальные обоснования (см. [295]) носили чересчур специальный характер, чтобы их здесь воспроизводить, и вообще были не очень убедительны и неполны{85}. Чуть ниже я приведу независимые аргументы в подтверждение уместности соответствующей физической схемы. Хотя в существующем виде эта аргументация также не совсем полна, она, по всей видимости, все же имеет в своей основе некое мощное требование непротиворечивости, которое дает дополнительное подтверждение предположению о том, что редукция состояний должна, в конечном счете, представлять собой гравитационный феномен, в общем и целом укладывающийся в рамки предлагаемого здесь описания.
О проблеме с сохранением энергии в схемах ГРВ-типа мы уже упоминали в §6.9. «Удары», которым подвергаются частицы (когда их волновые функции самопроизвольно умножаются на гауссову функцию), влекут за собой незначительные нарушения закона сохранения энергии. Более того, передача энергии носит, по всей видимости, нелокальный характер. Это, похоже, является характерной — и, вероятно, неизбежной — особенностью общих теорий такого рода, в которых R-процедура считается реальным физическим эффектом. Мне представляется, что эта особенность может послужить убедительным дополнительным свидетельством в пользу теорий, отводящих ключевую роль в редукции гравитационным эффектам, — поскольку в общей теории относительности сохранение энергии всегда было предметом тонким и даже скользким. Гравитационное поле содержит в себе энергию, которая вносит вполне измеримый вклад в общую энергию (и, стало быть, согласно эйнштейновскому E = mc2, массу) системы. С другой стороны, эта энергия представляет собой некую эфемерную субстанцию, существующую в пустом пространстве каким-то загадочным нелокальным образом{86}. Вспомним, в частности, о массе-энергии, что в виде гравитационных волн излучается системой двойного пульсара PSR 1913+16 (см. §4.5); эти волны суть рябь в самой структуре пустого пространства. Энергия, содержащаяся в полях взаимного притяжения двух нейтронных звезд, также является важной составляющей их динамики, каковую составляющую мы не можем игнорировать. Как раз такая разновидность энергии, «обитающая» в пустом пространстве, и является самой неуловимой из всех. Ее нельзя получить простым «сложением» локальных вкладов плотности энергии, ее даже нельзя локализовать в какой-либо конкретной области пространства-времени (см. НРК, с. 220—221). Возникает искушение соотнести столь же скользкие проблемы нелокальной энергии R-процедуры с аналогичными проблемами классической гравитации — сопоставить одни проблемы с другими в надежде разглядеть за ними логически связную общую картину.
Обеспечивают ли такую логическую связность выдвигаемые мною здесь предположения? Думаю, что со временем мы от них этого непременно добьемся, однако на настоящий момент четкой теоретической основы у нас пока нет. Все, впрочем, говорит за то, что в принципе эта грандиозная задача вполне решаема. В самом деле, как мы уже отмечали ранее, процесс редукции можно сравнить с распадом нестабильной частицы или ядра атома. Представьте себе суперпозицию состояний объекта в двух различных положениях как своего рода нестабильное ядро, распадающееся по истечении некоего характеристического времени «полураспада» на какие-то более стабильные продукты. Аналогичным образом суперпозиция положений объекта — нестабильное квантовое состояние — переходит по истечении некоего характеристического «времени жизни» (определяемого, в грубом приближении, величиной, обратной гравитационной энергии разделения) в состояние стабильное, когда объект оказывается либо в одном положении, либо в другом, что дает нам две возможные формы распада.
Согласно принципу неопределенности Гейзенберга, время жизни (или период полураспада) частицы или ядра атома обратно незначительной неопределенности в массе-энергии исходной частицы. (Например, массу нестабильного ядра полония-210, испускающего в процессе распада ?-частицу и превращающегося в свинец, точно определить невозможно, при этом неопределенность имеет порядок величины, обратной периоду полураспада — в данном случае, около 138 суток, — что дает для полония неопределенность массы всего лишь около 10—34 обшей массы ядра! Для отдельных нестабильных частиц, впрочем, неопределенность составляет существенно большую долю массы.) Таким образом, «распад», сопровождающий процесс редукции, также должен предполагать существенную неопределенность энергии исходного состояния. Эта неопределенность, согласно настоящему предположению, обусловлена, по большей части, неопределенностью собственной гравитационной энергии суперпозиции состояний. Собственная же гравитационная энергия включает в себя ту самую эфемерную нелокальную энергию поля, которая уже послужила причиной стольких неприятностей в общей теории относительности и которую нельзя получить простым сложением локальных вкладов плотности энергии. Кроме того, имеется тут и существенная неопределенность в сопоставлении друг другу точек различных пространственно-временных геометрий в суперпозиции, что мы отмечали в §6.10. Если допустить, что существенная «неопределенность» энергии состояний в суперпозиции представлена именно этим гравитационным вкладом, то результат такого допущения вполне согласуется с предсказанным выше временем жизни этого состояния. Таким образом, предлагаемая мною схема позволяет, по всей видимости, убедиться в наличии четкой связи между двумя энергетическими проблемами и по крайней мере обещает возможность построения на основе этих идей вполне непротиворечивой теории.
Наконец, остаются еще два важных вопроса, представляющие для нас в рамках настоящего исследования особый интерес. Первый: каким образом подобные соображения могут помочь нам понять принципы функционирования мозга? И второй: есть ли основания (физические) ожидать, что такому гравитационно индуцированному процессу редукции окажется свойственна невычислимость (некоего соответствующего вида)? В следующей главе мы увидим, что тут открываются кое-какие весьма захватывающие возможности.