34

34

Вообще говоря, это зависит от того, какие именно утверждения считать частью так называемой «евклидовой геометрии». Если пользоваться обычной терминологией логиков, то система «евклидовой геометрии» включает только утверждения некоторого частного вида, причем оказывается, что истинность или ложность этих утверждений можно определить с помощью алгоритмической процедуры; отсюда и утверждение, что евклидову геометрию можно описать с помощью формальной системы. Однако в других интерпретациях обычная «арифметика» тоже могла бы считаться частью «евклидовой геометрии», что допустило бы классы утверждений, которые невозможно разрешить алгоритмическим путем. То же самое произошло бы, если бы мы рассмотрели задачу о замощении плоскости полиомино как составляющую евклидовой геометрии, что, казалось бы, вполне естественно. В этом смысле описать геометрию Евклида формально ничуть не проще, чем арифметику!