65

65

Известно еще одно «классическое» объяснение тех ЭПР-эффектов, что наблюдались Аспектом и прочими экспериментаторами. Объяснение это (так называемый «коллапс с запаздыванием») предложил Юэн Сквайре [356], исходя из допущения, что реальные моменты выполнения измерения детекторами в двух удаленных друг от друга точках может разделять довольно существенный промежуток времени. Это допущение рассматривается в контексте некоей теории — само собой, нетрадиционной, вроде тех, что встретятся нам в §§6.9 или 6.12, — где делаются вполне конкретные предсказания относительно вероятного момента времени, в который реально выполняется каждое из двух квантовых измерений. Поскольку оба эти момента подвержены влиянию всевозможных случайных факторов, ничто не мешает предположить, что один из детекторов выполнит измерение существенно раньше, чем другой, — настолько раньше, что этого времени вполне хватит на то, чтобы сигнал от первого детектора, распространяясь со скоростью света, достиг второго детектора и передал ему информацию о результате выполненного измерения.

Согласно такой точке зрения, всякое квантовое измерение сопровождается «информационной волной», распространяющейся со скоростью света в направлении от события измерения. Это представление полностью согласуется с классической теорией относительности (см. §4.4), однако противоречит, на достаточно больших расстояниях, квантовой теории. В частности, коллапсом с запаздыванием невозможно объяснить описанные в §5.3 свойства магических додекаэдров. Разумеется, соответствующего «эксперимента» пока еще никто не проводил, и можно вполне безнаказанно уверять себя в том, что уж в этом-то случае предсказания квантовой теории нипочем не подтвердятся. У меня, однако, имеется и более серьезное возражение: попытка применения теории «коллапса с запаздыванием» к другим квантовым измерениям сталкивается с серьезными трудностями, приводящими в конечном итоге к нарушению всех стандартных законов сохранения. Например, два достаточно разнесенных детектора смогут при таком раскладе уловить одну и ту же, скажем, ?-частицу, испускаемую при распаде радиоактивного атома, что разом нарушает законы сохранения энергии, электрического заряда и барионного числа! (При достаточно большом расстоянии между детекторами «информационной волне» от первого детектора просто-напросто не хватит времени для того, чтобы успеть «предупредить» второй детектор, запретив ему тем самым принимать ту же ?-частицу.) Впрочем, «статистически» законы сохранения в данном случае все равно действуют, и мне не известно ни об одном реальном измерении, опровергающем это допущение. Одну из последних оценок статуса соответствующей теории можно найти в [204].