III. Эволюция скачкообразная и непрерывная

We use cookies. Read the Privacy and Cookie Policy

III. Эволюция скачкообразная и непрерывная

Сходство техно– и биоэволюции имеет предел. Аксиометрический анализ природных гомеостатов можно предпринимать по крайней мере двояким образом: признавая условия биогенетического старта либо обязательными, либо – случайными. Если мы признаем их обязательными, это значит, что стартовые условия мы принимаем безоговорочно, а сомнению подвергаем только вызываемые последствия процесса. Потому что процесс этот, начавшись однажды, обрел явно случайную характеристику, которая, к примеру, проявилась в том, что там, где в «эволюционной игре с Природой» участвовало большое количество популяций, – как на больших континентах – могли возникнуть живородящие млекопитающие, а там, где таких «партнеров по розыгрышу» было значительно меньше – как на просторах изолированной Австралии, – возникли «только» сумчатые. Из этого следует, что функция выигрыша в эволюционной игре с Природой зависит, среди прочего, от того, как много «партнеров» – организмов – составляют «коалицию», противостоящую «мутационными мероприятиями» Природе как жизненной среде. Чем больше партнеров, тем больше вероятность того, что кто-то из них «вытянет» из мутационной мешанины особенно редкую конфигурацию генов, ту, которая представляет собой как бы «главный выигрыш» данной партии. Эта проблема в некоей наиболее общей формулировке аналогична постановке вопроса о том, исчерпали ли все эти конфигурации генотипов, которые все вместе составляют целое собрание организмов, какие только существовали на Земле, исчерпали ли они уже комплекс оптимальных конструкций гомеостаза или не исчерпали? Этот вопрос можно назвать и «проблемой неиспользованных возможностей», выигрышей, на которые в эволюционном процессе не выпал жребий. Эволюцию следует признать процессом обучения, который проходил под исключительно жестоким надзором, потому что протекал между полюсом репрессии в виде уничтожения и полюсом награды в виде премии выживания. О жестокости метода мы говорим не в каком-то там моральном смысле, но предельно откровенно, потому что способа преподавать более радикально вообразить себе уже нельзя, поскольку эволюционная селекция – это такой метод проб и ошибок, когда за совершенную ошибку карой является смерть, а за удачную попытку – ее отсрочка. Подобные решительные меры как бы компенсируют чрезвычайную неповоротливость собственно темпа процесса, который в принципе является марковским, то есть наделенным некумулятивной памятью; и поэтому даже наиболее совершенные изобретения мутации подвергались уничтожению и исключению из хода эволюционного совершенствования, если вид, который был носителем таких изобретений, за совершенную ошибку исключался из игры. По той же причине подобные изобретения скрупулезно складывались из простейших генных комбинаций бесчисленное количество раз заново. Именно в свете этого два типичных для эволюции явления представляются особенно существенными и, одновременно, поразительными. (Следует добавить, что поразительное в науке означает попросту незнание причинных механизмов.)

Прежде всего мы имеем в виду конструктивную универсальность генного кода, которая позволяет информационной системе, возникшей на ранней стадии эволюции, в основе своей одноклеточной, впоследствии обнаружить пластичность, соответствующую требованиям строительства согласно всей совокупности известных нам многоклеточных растительных и животных форм. Подобная функциональная избыточность озадачивает, поскольку сформировалась за сотни миллионов лет до эпохи ее фактического – эволюционного – использования. Тогда как генный код с его «лексикографией» и синтаксисом был первоначально – очень длительное время, кто знает, не порядка ли миллиарда лет – информационным инструментом создания организмов со степенью сложности амебы, после чего позднее оказался способным воспроизводить организмы, равных по сложности насекомым или позвоночным. Априори скорее можно было бы ожидать значительно более раннего истощения комбинаторского потенциала, его погрязания в экране форм не слишком отдаленных от тех, которые на старте совершили открытие дезоксирибонуклеинового кода. Мы не можем объяснить универсальности, проявившейся так рано, иначе как только признанием, что между генным кодом и языком возникает глубокое не случайное сходство, иными словами, и там, и тут речь идет об информационных системах, принципиально открытых, о теоретико-множественной характеристике, о примерно одинаковом количестве степеней свободы, причем природа этого родства кажется независимой от – насколько же разных! – субстратов как носителей информации. Из этого бы следовало, что как генезис кода ДНК, так и этнический язык представляют собой два разных частных случая, представляющих эволюцию динамических информационных структур. Мнение, что якобы код наследственности был формой языка, еще, собственно, не стало общепринятым, и даже, говоря именно так, большинство ученых высказывается как бы метафорически. Однако мне не кажется, чтобы речь шла только о метафоре, и именно структурно-лингвистические исследования позволят нам, быть может, наконец понять, какие главенствующие законы управляют возникновением всех возможных (а не только этнических) языков. И только таким образом достигнутый уровень понимания вещей устранит наше восхищение перед хромосомным явлением, которое займет свое естественное место в общей теории (информационных) систем.

В то же время о генераторе, произведшем язык наследственности, нам абсолютно ничего не известно, кроме того, что это должно было быть удивительно сложное устройство.

Элементы кода наследственности элементов никакой детальной технологии нам не напоминают, потому что мы хорошо знаем о том, что любая технология исторически оказывалась замкнутой, завершенной, как бы нерастяжимой системой, посредством чего она достигала предела своих возможностей. Тем же, что последующий прогресс оказывался возможным, мы обязаны нашей способности радикально отбросить устаревшую технологию и обратиться к радикально новой. Так, например, от технологии преобразования разных температурных потенциалов в электрическую энергию необходимо будет по истечении некоторого времени отказаться, поскольку существует предел производительности тепловых устройств, который непреодолим. Тогда переходят к ядерному производству электричества, без использования теплообменных аппаратов, или к непосредственной трансформации энергии химических связей в энергию тока. Во время такой промышленной революции огромный объем знаний, как теоретический, так и накопленный в конструкциях (например, паровых машин), попросту идет на слом. Если бы эволюция натолкнулась на подобный барьер, она бы на нем определенно застряла, поскольку тотальная реорганизация вкупе с излишками и полным отказом от определенных решений в ней невозможны; иной прогресс, кроме непрерывного, в ней реализовать нельзя (он включает в себя генные кванты и поэтому зернистый, то есть микроструктурно дискретный, но этот аспект проблемы в фенотипах вообще пропадает из-за того, что его замещает компенсационно-регулирующая работа онтогенетических буферов). Из этого следует, что эволюция технологий, особенно там, где она производит значительный переворот, скачкообразна, тогда как биологическая всегда следует из суммирования мелких изменений. Можно спорить о масштабах этих изменений, но по уровню значимости они никогда не составляли чего-то такого, что бы можно было сравнить с отказом от энергетики пара в пользу энергетики атомного ядра.

Однако указанное различие скорее поверхностно и, более того, следует из не во всем приемлемой методики сравнения. Потому что принцип технологической инновации заключается в последовательной смене энергетических источников, строительных материалов, инструментов для обработки и способа управления этими инструментами. А источники энергии, строительный материал, инструменты и управление ими до сегодняшнего дня в эволюции такие же, какими они были вначале. Энергетика, материал и управление, таким образом, остаются в ней без изменения. Кроме того, создается впечатление, что невозможно никакое существенное изменение в их рамках. Это означает, что при любой перетасовке генов в возникающих организмах не происходит отказа от химической энергетики в пользу иной (ядерной, например) или замены материала или же правил его трансформации. И следовательно – только в аспекте этой неизменной троицы – правомерно ставить вопрос о том, возможна ли такая комбинаторика генов, которая бы производила подобия организмов, нетривиально отличающихся от их совокупности, реализованной в процессе эволюции?

Перед тем как ответить на этот вопрос, следует подчеркнуть, что ответ окажется чрезвычайно упрощенным по причине масштабов нашего неведения. Оценочные расчеты позволяют предполагать, что принцип полного отсутствия заданности мутаций и селекции их результатов не дает суммарно такой совокупности упорядочений, во всем их разнообразии, которая хотя бы приблизительно перекрывала то организационное разнообразие, которое эволюция фактически воплотила. Кроме того, из существующей на сегодня теории следуют вещи по крайней мере странные, если не обыкновенный обман. Так, например, количество людей, живущих в настоящее время, уже сейчас равняется количеству всех их предшественников – где-то начиная от палеопитека. А поскольку считается, что homo sapiens возник от предшественника человека благодаря мутации генов популяции, то из этого должно следовать, что популяция homo сегодняшняя должна представлять разнообразие того же порядка, какую обнаруживали родительские по отношению к ним популяции. То есть, собственно, ежедневно мы должны ожидать возникновения форм homo в такой степени новых, в какой он сам был инновацией в отношении неандертальца по крайней мере. Чего, однако, не происходит. Более того, по смерти энтелехии иногда пытаются ее остаток включить в гены, приписывая им своего рода всесилие в виде ответственности, локализованной хромосомно, за все, что происходит с фенотипами организмов. Потому что считается, что существуют гены, определяющие степень вероятности заболевания раком, и даже – что естественная смертность животных является результатом радикального неотсеивания летальных генов, которые лениво функционирующая селекция только лишь как бы вымела из одного угла жизни в другой, перемещая их из фазы размножения организмов в фазу завершенного размножения, то есть в период старческого упадка. Но ведь не происходит так, чтобы – скажем – деструктивные для автомобиля результаты усталости материала, из которого он изготовлен, возникали из-за аналога летального гена, каковым бы являлась ошибка проектировавшего конструктора. Логической моделью эмбриогенезиса как трансформации исходного элемента в организованную конечную совокупность (заданную подотделами), будет вычисляемая и упорядочиваемая серия пошаговых операций. Вот уж логическое обоснование таких трансформаций может быть любым, поскольку дедуктивным операциям чужда ненадежность как информационная, так и материальная. Но совершенно точно оно не может быть произвольным – это логическое обоснование эмбриогенетического процесса, то есть существует предел конструктивной функциональности, заданной стартовой инструкцией генотипа, потому что из-за превышения определенно заданной сложности, а также определенной длительности пути – отмериваемой последовательными шагами (отдельными делениями клеток эмбриона) – инструкция утрачивает функциональную силу, то есть контроль над процессом, поскольку она подвергается окончательному погружению во всякого рода «шумы». Конструкторская концепция, которую эмбриогенезис воплощает во всем государстве жизни, сводится к тому, что целое функциональной информации по отношению к конечному продукту готово в самом начале, в «одном флаконе» – оплодотворенной клетки, – и что никакая регулирующая или направляющая «помощь» этому процессу формирования «попутно» доставляться уже не будет. Иными словами, тут активно проявляется принцип конструкторской автаркии. Тот самый, который потом столько проблем создает «непрошенным эволюцией» помощникам организма – врачам, когда они пытаются с помощью пересадки внедрить в него здоровый орган, взятый от другой особи вида.

Таким образом, мы не имеем права ожидать, что произвольным продолжением текста исходной инструкции, соответственно углубленной этим продолжением значимостью эмбриогенетических операций – удастся находить «абсолютно новые решения» задач гомеостаза как «оригинальные прототипы организмов». Потому что генотип имеет границы функциональности – как самореализующийся прогноз. Таким образом, ограничения, изначально наложенные на генный алфавит как некая функциональная совокупность, по крайней мере двойные. Их можно назвать ограничениями «в ширину» и «в длину», если под первыми понимать – барьеры, не пропускающие к новой энергетике, к новым материалам и к новому управлению, а под вторыми – барьеры, создаваемые кумуляцией «шумов» в ходе строительства, пересиливающего направляющий потенциал. Но если инженерия генотипов оказывается бессильной перед первым ограничениям, она вовсе не обязана быть столь же беспомощной перед вторыми, потому что такой процесс воспроизведения, который начинает из-за чрезмерных сложностей как бы «сам о себя спотыкаться», в принципе можно подрегулировать снаружи, наблюдая за его ходом и поддерживая его информационно-энергетическими корректировками. В этом смысле к состояниям, к каким естественным путем эволюция никогда прийти не сможет, генная инженерия прийти бы смогла. И этот факт оказался бы беспредметным (как бессмысленный) только в том случае, если бы оказалось, что вне той сферы конструкций, к которым ведет природный биогенетический путь, нет уже вообще никаких основательных решений задач гомеостаза, то есть что то и только то, что «креативные регуляторы» генотипов в состоянии соорудить, соматические регуляторы фенотипов смогут стабилизировать.

Возможный с этими ограничениями комбинаторный набор генотипов (искусственных генотипов, потому что мы говорим о созданиях «инженера-генетика»), производимый на основании данного алфавита ДНК, а также свойственного ему «синтаксиса», несмотря на эти ограничения, обладает значительно большей мощностью, чем все множество электронов Космоса. И даже подмножества этого множества, заполненные только теми результатами перетасовок, которые представляют собой функциональные гомеостаты (с оговоркой, что это организмы, способные к выживанию только в земной среде), не намного меньшей мощности. Однако преобладающее большинство элементов подмножеств – это варианты реальных организмов, они банальны (скажем, вроде коня с копытами).

Кирпичиками любой такой конструкции являются клетки. Что касается их свойств, то здесь тоже революций не ожидается, потому что, вопреки видимости, недифференцированные клетки от предельно дифференцированных различаются не слишком существенно – речь идет, самое большее, о таком параметрическом пространстве, которое отделяет сокращаемость амебы от сокращаемости отдельного мышечного волокна – или проводимость импульсов, свойственную амебе, от такой же проводимости – нейрона. Понятно, что такие различия жизненно важны для организмов, но все они помещаются в промежутке одного порядка величины. Импульс тогда передается то со скоростью нескольких десятков сантиметров, то больше десяти метров в секунду. Поэтому почти весь огромный запас различий, которые возникают между организмами разных эволюционных уровней, является производной скорее структурно-целостных решений, чем «выдавливания» из кирпичиков материала таких новых функций, каких в нем сначала не было. Потому что физические параметры строительного материала даны при сильном и тем самым непреодолимом принуждении – сразу.

Таким образом, сенсационность гомеостатических изобретений является функцией мощности множества целостных конфигураций как построек, возникших в результате перетасовывания генного словаря. И тогда эта сенсационность – в протяженности ее разнородности – оказывается под вопросом. Ведь невозможно на основании генного алфавита произвести иную, чем данная, энергетику, иное, чем испытанное, устройство для передвижения (что, впрочем, тесно связано с энергетическим принуждением), кроме крайних условий, определенных скелетно-мускульным типом движений (причем скелет может быть внутренний, рычажно-осевой, или внешний, кожуховый, и ничего другого тут «выдумать» невозможно), иной – с точки зрения информационной проводимости – структуры центров управления.

Когда задана под сильным принуждением клеточная микроструктура и под более слабым – макроструктура, каких еще синтетически реализованных сенсаций мы могли бы ожидать? Не значит ли это, что эволюция все стоящие попытки уже реализовала? В этом можно сомневаться – согласно следующему рассуждению: эволюция «забывает» – вымершими формами – различные конструктивные решения, и их можно в качестве как бы генной инструкции «подсказывать». Затем, представляется возможной определенная реорганизация организмов – достаточно радикальная. Так, например, переход от гемодинамики на иной способ доставки кислорода тканям не представляется возможным, может быть, только благодаря совершенно непредсказуемым открытиям, которые позволят доставлять тканям вместо кислорода – сами электроны в каких-нибудь «упаковках». Но приходится сомневаться в том, что даже тогда можно было бы вообще отказаться от циркуляционного решения (то есть выталкивания определенной жидкости с помощью сети сосудов в глубь всего организма). Ну может, по крайней мере усовершенствовать систему, приводящую в движение кровь. У всех животных ее приводит в движение вид механического насоса, примитивного конструктивно (следует оговориться: примитивен сам принцип насоса, а не его реализация; в эволюционном смысле подобная реализация приближается к границе возможностей, но сама граница, обозначенная физической характеристикой таких насосов, уже с места не двигается). Замена его насосом электродинамическим представляется соблазнительной. Конструкция самого подобного насоса не представляет какой-то серьезной проблемы (ведь генные инструкции позволяют, как мы знаем, создавать функциональные электрические органы). Зато проблематичным оказывается придание перемещаемому – кровяным тельцам – магнетической или электрической полярности. Магнитов, как и вообще металлических элементов, генотип произвести не может; в этом случае решения наверняка должны быть – ионными (иных жидкая среда не допускает). Может быть, необходимая концентрация ионов оказалась бы недопустимой для тканей. Но, в свою очередь, можно вообще отказаться от насоса, помещенного наподобие сердечной мышцы, и использовать в качестве него, то есть электродинамического двигателя с полным отсутствием подвижных частей – просто все стенки сосудов.

В этом пункте рассуждений мы подходим не только к признанию того, что такое решение проблемы выглядит возможным для воплощения, но, что более важно, к пониманию, почему его не произвела эволюция. Прототипом сердца-насоса было что-то вроде маленькой сжимающейся трубочки у относительно небольших животных, и это решение проблемы «протаскивалось» по всем разветвлениям эволюционного дерева. Речь идет о таком устройстве, которое тем лучше, чем в меньшем организме оно «испытывается». Так, например, трахеи у членистоногих, благодаря которым природа обходится без легких и легочного кровообращения, надежно работают у мелких животных – насекомых, а впоследствии они оказываются фактором, ограничивающим увеличение размеров тела, из-за чего насекомые «не смогли поумнеть» (потому что соотношение информационноперерабатывающей способности с объемом восприятия нервной системы приблизительно постоянное, и поэтому нейронный мозг невозможно «миниатюризовать» так, чтобы в конце концов ночная бабочка или муравей оказались хотя бы только «как крыса, умные»). Вполне возможно предположить, что если бы насекомые не споткнулись бы так незадачливо об эти трахеи, нас бы на свете не было. Потому что после определенного граничного предела развития, который наверняка можно обнаружить только с помощью статистики на эволюционном пути, отдельные решения целостных проблем гомеостаза становятся необратимыми. Это значит, что как «из трахей», которые однажды возникли основательно, так и из «механического насоса – сердца» выкарабкаться уже нельзя – естественным эволюционным образом.

А однако переход от прерывистой подачи крови толчками на непрерывное течение дает множество преимуществ – например, облегчает стабилизацию кровяного давления, облегчает пропорциональный доступ крови к отдельным частям тела. И поэтому такая «рационализация» была бы с одобрением воспринята «инструментальной аксиометрией» – гомеостазом.

Однако почему эволюция «сама не пришла к этой мысли»? Сравнительно со всеми, ею вообще не замеченными, следует отметить, что вероятность нетривиальной инновации (каковой мы считаем упомянутую) зависит от значения вероятности одновременного (синхронного) появления и исчезновения – определенного числа мутаций, которые должны представлять собой явления, независимые друг от друга. Тогда – понятная вещь – что, чем больше таких мутационных событий, случайных по отношению к друг другу, должны совпадать в одной и той же системе для того, чтобы «возникло изобретение», тем меньше вероятность подобной встречи, а выше определенного количества одновременных мутаций их необходимое совпадение оказывается явлением уже астрономически редким. А именно: чем-то таким, чем было бы выпадение тысячи «орлов» одновременно при броске тысячи монет. Эволюционная игра вообще оказалась бы обречена на безнадежное невезение, если бы не хитрый маневр, состоящий в создании подобия «туза в рукаве» игрока – в виде явления рецессивности в аллелях. И тогда рецессивный ген как раз является чем-то вроде козырного туза, причем, «спрятанный», он еще не козырная карта, но может ею стать внезапно в один из моментов продолжающейся игры. Это легко показать на простом примере. Время, которое должно пройти для игрока в бридж, пока в результате случайной комбинации карт после перетасовывания у него на руках оказался бы большой шлем, достаточно длительное. Однако если бы у него была хотя бы одна карта, спрятанная в рукаве, он сделает шлем, даже если получит на руки расклад с одним пробелом, а если бы у него в рукаве было больше карт, то шлем для него перестанет быть проблемой пассивного ожидания удачного хода. Но не может у игрока быть спрятана в рукаве целая колода, так же и организм не может обладать произвольным количеством удерживаемых наготове рецессивных генов. Тем более что большинство таких генов «ни на что не годно», то есть ни в одном из возможных с точки зрения популяции раскладов не может обнаружить «инструментальной ценности». Потому что организм не так устроен, чтобы он мог проводить какую-никакую селекцию среди собственных рецессивных генов, рассуждая, что какой-то из них «стоит сохранить», а остальные «не стоит». Однако то, чего не может сделать организм, сможет когда-нибудь сделать «инженер по хромосомам».

Этот вывод приводит нас в конце концов к ситуации, которая должна особенно интересовать эволюционного аксиометра. Потому что эволюцию иногда «упрекают» за чисто марковский тип регулятора, который в ней отвечает за специацию. В качестве марковского этот регулятор неэкономичный и необычайно медлительный в обучении; это, среди прочего, приводило к тому, что столько биологов считали наследование приобретенных свойств – то есть немарковский тип хромосомного «обучения» – эволюционно обязательным. Но метод эволюции, при всей своей расточительности, оказывается тем не менее более надежным на длительном отрезке времени, потому что то равновесие, какого достигает марковская цепочка, – оно недостаточно. Неуправляемость мутационного регулятора мира, проявляющаяся prima facie в как бы хаотичном растранжиривании «бессмысленных» комбинаций, которые селекция вынуждена постоянно обтачивать, фактически является неисчерпаемым источником разнообразия, поскольку лишь в высшей степени возможное разнообразие является ультимативным гарантом осуществления перемены – любой. Таким образом, наследование приобретенных свойств, в пределах короткого периода времени несомненно значительно более результативное, чем осуществление по Маркову, с легкостью могло бы поставить виды в безвыходную ситуацию. Именно марковский регулятор позволяет как бы постоянно начинать игру сначала – и только цена, которую за эту свободу приходится платить эволюции: пустое существование миллиардов существ – неподвластна нашему воображению. Мы не утверждаем, что этот вид регуляции наверняка был бы лучшим из всех возможных, но кажется, что он был бы лучшим из всех, достижимых в процессе эволюции, то есть достижимых при помощи естественных изменений. И хотя марковский регулятор начинает игру как бы все время заново – в «партии» пресмыкающихся, змей, млекопитающих – однако не могут быть его новации, управляемые случайностью, действительно целиком независимыми от прежних. Потому что постоянное давление временных тактических решений по отношению к целостной стратегии приводит в результате к лимитированию состояний, отстоящих, может быть, на миллиард лет, – состоянием, в котором принимается определенное решение. Одним словом, марковская последовательность событий не препятствует возможности блокировки выходов на будущие гомеостатически лучшие состояния – посредством худшего решения проблемы, однако такого, которое попросту стало реальностью. На то, что перед праамебой открылось когда-то несравненно больше эволюционных возможностей, чем их открывается перед млекопитающим, случайный марковский генератор уже не имеет никакого влияния. Потому что эволюция является настоящей игрой с точки зрения теории игр, то есть такой последовательностью ходов, где инстанцией, более мощной, чем любая используемая стратегия, является случай – и где проигрывает тот, кому изменила удача.

Следующей особенностью эволюции жизни, в сопоставлении с технологической, является отсутствие в биоэволюции того, что в технологии называют моральным устареванием устройств. По крайней мере prima facie дело выглядит таким образом, если древнейшие коралловые рифы сосуществуют с «современным» дельфином, улитка – с человеком, а примитивные лишайники – с последним словом эволюционной изобретательности в ее ботаническом ракурсе. Из этого видно, что в совокупности эволюционных реализаций отсутствует аксиометрическая упорядоченность, единообразно измеряемая. Поэтому существуют такие эволюционные задачи, которые можно решать разнообразными конструктивными способами, и оптимальность этих решений невозможно сравнить по одной шкале. В действительности, ситуация не слишком отличается от господствующей и в технике. Поскольку и там и тут присутствует проблема принятия решений, неотвратимо увязанная с необходимостью компромиссов. Речь идет о дилеммах, которые можно назвать конструкторскими антиномиями. Они возникают каждый раз, когда оптимальный максимум одних функций представляет собой неоптимальный для других, не менее необходимых. Это, например, касается отношения между корректировкой отклонений и тенденцией колебаний, которую сразу обнаруживают системы, оптимально корректируемые. Обычно такие коллизии значительно сложнее (они состоят не только из двух параметров). Как кто-то сказал однажды, не бывает кита с подвижностью блохи; поэтому эволюция осуществляется в среде, переполненной такими дилеммами.

Следует добавить, что технолог превосходит эволюцию как конструктор не так уж и значительно, как это могло бы показаться на основании его способности прогнозирования, которой эволюция лишена. Потому что и он действует на основании информации, полной пробелов. А поскольку он не может ожидать до бесконечности получения благоприятных вестей о конструируемом, в определенном смысле любая его изобретательская реализация является «преждевременной». В технологии – высокая ненадежность (первых самолетов, например), а в эволюции – высокая смертность – вот цена, которую приходится платить за «преждевременные» решения, потому помещенные в кавычки, что другими они быть не могут. Следовательно, компромисс неизбежен. Причем для характеристики процесса не имеет значения, реализует ли его кто-то сознательно или, как эволюция, «безлично».

При таком состоянии вещей инструментальная аксиометрия биологии должна научиться оперировать методами, выработанными технологией. Как уже было сказано, меры ценности осмысленны и даже однозначно объективны в пределах определенной конкретной технологии; можно по многим аспектам сравнивать реактивный самолет с обыкновенным, но нельзя сравнивать самолет с роликами. Ценностям внутри системы определенной технологии будут тогда соответствовать ценности внутри конкретных схем телесной организации в биологии. В каких-то границах можно бы, кто знает, аксиометрически упорядочить всех насекомых или всех наземных млекопитающих, но нельзя ни спрашивать, ни отвечать на вопрос, лучше ли организация насекомых, чем организации млекопитающих.

Таким образом, меры ценности неприменимы тем очевиднее, чем менее детализированы, чем более обобщены условия их применения. Ничего, кроме аксиометрии, которая позволила бы нам объективно установить, что человек является «венцом творения», возникнуть не может. Он является разрешением адаптационной проблематики, существенно отличным от всех остальных в животном царстве, но это отличие чем-то «лучшим» в чисто инструментальном смысле стать не может. Нужно в критерии включить образцы неинструментальных ценностей, чтобы получить ответ, столь желанный для многих.

Об аксиометрии «случайно-начальной» здесь мы можем только упомянуть, потому что она, собственно, выходит за рамки биологии. Я напомню, что первый «начально-обязательный» ее тип, в общих чертах представленный выше, следует из утверждения, что генный алфавит «попросту дан» – то есть сомнению не подвергается. Аналогично можно утверждать, что не только развилки и зигзаги эволюционного процесса представляют собой перипетии, необязательные в каждой детали специационных воплощений, но также что сама «лексикография» и «синтаксическая» характеристика проверочной «артикуляционной» системы эволюции – то есть характеристика ДНК – является результатом случайных событий, результатом, который мог быть совершенно иным.

Быть может, мы фантазируем, потому что ничего такого как раз возникнуть-то и не могло; но пока мы этого не знаем, гипотезы иного содержания еще позволительны.

Как мы старались это показать, проверочный «артикуляционный потенциал» генов, построенных из ДНК – с технологической точки зрения – не только не бесконечны, но даже (в определенных границах!) равен возможностям человеческих технологий. Потому что гены не могут, например, реализовать энергетику вне химии и помимо белка. ДНК не может войти ни в одну из областей таких явлений, которые можно воплотить только при высоком давлении, высоких температурах, высоких степенях радиации. И т.д. О том же, что поле генной функциональности изначально ограничено полной замкнутостью, мы знаем очень хорошо. Аналогично сам этот исходный алфавит и его синтаксис могут быть подвержены сомнению в аспекте их единого космического возникновения. Может быть, другие начальные условия, как геологические, так и химические, создадут возможность для возникновения другого рода «артикуляционной аппаратуры» – какого-нибудь небелкового или не только белкового типа. На этот след можно выйти либо в лаборатории на Земле, либо же открыть эту возможность в процессе исследования небесных тел. Тогда биология окажется исследованием только определенной особой формы жизненных процессов. Разумеется, это приведет к новой релятивизации присущей ей аксиометрии. Потому что то, чего нельзя осмысленно оценивать с инструментальной точки зрения, раз оно является элементом совокупности нереализуемых генным образом конструкций, окажется пригодным для оценки в качестве реализованного иным генератором наследственных кодов, создающего другое поле, другое конфигуративное пространство решений задач гомеостаза. Но сегодня мы можем только отметить саму такую возможность, потому что ничего из подчиненной ей конкретики мы не знаем.

IV. БИОЛОГИЯ И НЕИНСТРУМЕНТАЛЬНЫЕ ЦЕННОСТИ

Ценности, названные нами «вторым видом», являются типичным явлением культуры[64], хорошо известным, например, антропологам как исследователям, которые практически весь свой труд посвящают их открытию и сравнению. Возникает вопрос: возможно ли в принципе обнаружить в биологии наличие аналогичных ценностей – и каким объективным способом? Так вот, вероятно, что принципиально это возможно. Однако эта программа поиска требует создания определенных предпосылок. Если бы было так, что все, что в организме относится к особенностям, даже в малейшей степени неадаптационным, и тем самым является местом энергичного приложения сил отсеивания, ценности второго вида не могли бы возникнуть в процессе эволюции.

Но если бы в действительности происходило именно так, то есть если бы жизненная среда не обнаруживала ни капли «нейтральности» по отношению по крайней мере к некоторым свойствам организма, процесс антропогенеза не поддался бы ограничению эволюционной схемой. Потому что в нем ex nihilo nihil fit[65]. Ведь должны же были как-то появиться зародыши таких механизмов, которые на более поздних стадиях антропогенеза обнаруживают свой ценностно-производный характер (во втором, неинструментальном значении). Эти механизмы из ничего возникнуть не могли, как не могли из ничего возникнуть мозг человека или крыло птицы: в предшественниках этих систем должны были присутствовать в зародыше черты, поддающиеся селекционному развитию. Так, например, по крайней мере вероятным является наличие в организмах свойств, которые не только и исключительно адаптационные. Наверняка эти свойства связаны с адаптационными и тем самым представляют собой их избыточность. Такие «надстройки» подвергаются протаскиванию через игольное ушко селекции благодаря тому, что их не отсеивает фильтр среды и что существует нечто такое, что им уже не нейтрально способствует. Это «благоприятствование» может выступать в форме обычного «бездейственно-статистического» генного дрейфа – в небольших популяциях. Но тогда свойства, проявившиеся в результате дрейфа, вообще не представляют собой субстрата, который что-либо «значил» функционально, это всего лишь какие-то придатки, инструментально безвредные и непригодные. Однако если бы эти свойства были выделены в результате полового отбора, может оказаться, что на правах критериев в нем участвуют – факторы «эстетической» природы. Их присутствие равно «открытию автономных ценностей» – на биологическом пространстве. Гипотезы подобного рода уже выдвигались, хотя и проговаривались несколько иначе. И это понятно. Мы, возможно, можем обнаружить благодаря инструментальной аксиометрии, что «ни к чему не годны» некие такие свойства, как особенно красивое «брачное» оперение птиц. Потому что простую функцию сигнализирования, способствуя половым контактам, может выполнять значительно более скромно разработанная, «менее эстетизированная» узорная фактура такого оперения. Если бы можно было окончательно доказать его информационную избыточность, ту, которая уже ни самой сигнализации (полового партнера) не служит, и не представляет собой излишества, направленной против уровня «шумов» окружающей среды, ни, наконец, не помогает в специфике своей узнаваемости сигналу (чтобы было можно его отличить от всех других аналогичных сигналов, какими пользуются различные виды в той же окружающей среде) – этот остаток следовало бы признать результатом таких «эстетических решений», которые принимают половые партнеры. Поскольку тогда данный образец выделялся бы также и по внесигнализационной причине – потому что «нравится».

Конечно: совершенно законным образом биологии не удастся это постулировать – собственно говоря, никогда. Поскольку все, что можно обнаружить, представляет собой неадаптационную избыточность какой-нибудь информации. Причины, по которым именно она получает привилегию в случаях, предоставляемых половым отбором, наверное, навсегда должны остаться тайной в их «познавательном» аспекте. И только мышление по аналогии, экстраполирующее головокружительным с точки зрения метода образом с человека на другие организмы, позволяет приписать эту избыточность – не только и не просто характера, инструментально невосприимчивого, но на заполнение этой «адаптационной пустоты» – названием «эстетические критерии», какое якобы могли применить некие птицы (а также и какие-нибудь ящерицы, например), когда они готовятся спариваться. Однако, чтобы обнаружить то, что является инструментально излишним в информации, которой располагает организм, необходимо для начала с максимальной точностью определить границы применяемости всей информации внутри организма. То есть «открытия ценностей второго вида» могут быть только производной – и то при определении названия ненадежным – основательного укоренения инструментальной аксиометрии гомеостаза, каковое искомое состояние отстоит от нас на неизвестное количество поколений биологов.