Обзор
Обзор
Часть I: ГЭБ
Интродукция: Музыко-логическое приношение. Книга начинается с истории Баховского «Музыкального приношения». Бах неожиданно посетил короля Пруссии Фридриха Великого. Король предложил Баху тему для импровизации; результат явился основой этого великого творения. «Музыкальное приношение» и история его создания являются той темой, на которую я «импровизирую» в этой книге, создавая, таким образом, нечто вроде «Метамузыкального приношения». В интродукции обсуждается автореферентность и взаимодействие между различными уровнями у Баха; затем я перехожу к параллельным идеям в рисунках Эшера и Теореме Гёделя. Чтобы поместить последнюю в исторический контекст, дана краткая история логики и парадоксов. Это ведет к обсуждению механистической философии и компьютеров и спора о возможности создания искусственного интеллекта. В заключение я объясняю, как возникла идея этой книги и, в особенности, Диалогов.
Трехголосная инвенция. Бах написал пятнадцать трехголосных инвенций. В этом трехголосном Диалоге Черепаха и Ахилл — главные действующие лица моих Диалогов — «изобретаются» Зеноном (как на самом деле и произошло, для иллюстрации парадоксов Зенона о движении). Этот Диалог совсем коротенький; он дает читателю почувствовать дух последующих Диалогов.
Глава I: Головоломка MU. Представлена простая формальная система, MIU; чтобы ближе ознакомиться с формальными системами, читателю предлагается найти решение некоей головоломки. Вводится несколько основных понятий: строчка, теорема, аксиома, правило вывода, деривация, формальная система, разрешающая процедура, работа внутри и вне системы.
Двухголосная инвенция. Бах написал также пятнадцать двухголосных инвенций. Этот двухголосный Диалог был написан не мной, а Люисом Кэрроллом в 1895 году. Кэрролл позаимствовал Ахилла и Черепаху у Зенона, а я, в свою очередь, позаимствовал их у Кэрролла. Тема Диалога — отношения между рассуждениями, рассуждениями о рассуждениях, рассуждениями о рассуждениях о рассуждениях и так далее. В каком-то смысле парадокс Кэрролла параллелен парадоксу Зенона о невозможности движения, путем бесконечного регресса доказывая, что рассуждения невозможны. Этот парадокс очень красив; он упоминается в книге несколько раз.
Глава II: Значение и форма в математике. Вводится новая формальная система (система pr), еще более простая, чем система MIU предыдущей главы. Ее символы, вначале кажущиеся бессмысленными, приобретают значение благодаря форме тех теорем, в которых они находятся. Глубокая связь значения с изоморфизмом — наше первое важное открытие. В этой главе обсуждаются многие темы, связанные со значением: истина, доказательство, манипуляция символами, а также само ускользающее понятие «формы».
Соната для Ахилла соло. Диалог, имитирующий сонату Баха для скрипки соло. Ахилл — единственный собеседник, поскольку это запись его реплик в телефонном разговоре с Черепахой. Речь идет о «рисунке» и «фоне» в разных контекстах — например, рисунки Эшера. Сам Диалог — пример такого различия, поскольку реплики Ахилла представляют «рисунок», а соответствующие воображаемые ответы Черепахи — «фон».
Глава III: Рисунок и фон. Различие между рисунком и фоном в изобразительном искусстве сравнивается с различием между теоремами и не-теоремами в формальных системах. Вопрос «содержит ли рисунок ту же информацию, что и фон?» ведет к различию между рекурсивно перечислимыми и рекурсивными множествами.
Акростиконтрапунктус. Это центральный Диалог книги, поскольку он содержит множество перифразов Гёделева автореферентного построения и теоремы о неполноте. Один из них утверждает: «Для каждого патефона существует запись, которую он не может воспроизвести». Название Диалога — комбинация слов «акростих» и «контрапунктус» — латинское слово, использованное Бахом для названия многих фуг и канонов, составляющих «Искусство фуги». «Искусство фуги» несколько раз упоминается в Диалоге. Сам Диалог содержит хитрые трюки типа акростихов.
Глава IV: Непротиворечивость, полнота и геометрия. Предыдущий Диалог разъясняется настолько, насколько это возможно на данном этапе. Это снова приводит к вопросу, когда и каким образом символы в формальных системах приобретают значение. Для иллюстрации труднообъяснимого понятия «неопределенных термов» используется история эвклидовой и неэвклидовой геометрии. Это ведет к идеям о непротиворечивости различных и, возможно, «соперничающих» геометрий. Это обсуждение разъясняет понятие неопределенных термов и их отношение к восприятию и мыслительным процессам.
Маленький гармонический лабиринт. Этот Диалог основан на органной пьесе Баха того же названия. Это забавное введение в понятие рекурсивных — то есть вложенных одна в другую — структур. Основная история, вместо того, чтобы закончиться, обрывается на полпути, так что читатель зависает в воздухе. Одна из историй-матрешек касается модуляций в музыке и, в особенности, в одной органной пьесе, заканчивающейся в неправильной тональности, так что слушатель зависает в воздухе.
Глава V: Рекурсивные структуры и процессы. Идея рекурсии представлена в разных контекстах: музыкальные, лингвистические и геометрические структуры, математические функции, физические теории, компьютерные программы и т. д.
Канон с интервальным увеличением. Ахилл и Черепаха пытаются ответить на вопрос: «Где содержится больше информации — в пластинке или в патефоне?» Этот странный вопрос возникает, когда Черепаха описывает пластинку с некоей оригинальной записью. Будучи проиграна на разных патефонах, эта запись воспроизводит две различные мелодии: В-А-С-H и C-A-G-E. Однако оказывается, что, в некотором смысле, эти две мелодии — «одно и то же».
Глава VI: Местонахождение значения. Подробное обсуждение того, каким образом значение разделено между закодированным сообщением, дешифрующим механизмом и получателем этого сообщения. В качестве примеров приводятся цепочки ДНК, нерасшифрованные старинные надписи и пластинки, затерянные в космосе. Предполагается связь разума с «абсолютным» значением.
Хроматическая фантазия и фига. Короткий Диалог, почти ничем, кроме названия, не похожий на Баховскую «Хроматическую фантазию и фугу». Речь здесь идет о том, как правильно манипулировать высказываниями, чтобы они оставались истинными; в частности, обсуждается вопрос, существуют ли правила обращения с союзом «и».
Глава VII: Исчисление высказываний. Обсуждается, как слова, подобные «и», могут управляться формальными правилами. Снова используются идеи изоморфима и автоматического приобретения значения символами в подобной системе. Между прочим, все примеры в этой главе — «дзентенции», суждения, взятые из коанов дзена. Это сделано специально; ирония в том, что коаны дзена намеренно нелогичны.
Крабий канон. Диалог, основанный на одноименной пьесе из «Музыкального приношения». Оба названы так, поскольку крабы (предположительно) ходят, пятясь. Краб впервые выходит на сцену в этом Диалоге. Возможно, что это самый насыщенный словесными трюками и игрой разных уровней Диалог в книге. Гёдель, Эшер и Бах тесно переплетены в этом коротеньком Диалоге.
Глава VIII: Типографская теория чисел. Представляет расширенный вариант исчисления высказываний, так называемую «ТТЧ». В ТТЧ теоретико-численные рассуждения могут быть сведены к строгой манипуляции символами. Рассматриваются различия между формальными рассуждениями и человеческой мыслью.
Приношение МУ. В этом Диалоге вводятся несколько новых тем книги. Хотя, на первый взгляд, в нем обсуждаются дзен-буддизм и коаны, на самом деле это тонко завуалированное обсуждение теоремности и нетеоремности, истинности и ложности строчек теории чисел. Упоминается молекулярная биология — в особенности, Генетический Код. Сходство с «Музыкальным приношением» здесь только в названии и в автореферентных играх.
Глава IX: Мумон и Гёдель. Разговор идет о странных идеях дзен-буддизма. Центральная фигура — монах Мумон, автор знаменитых комментариев к коанам. В метафорическом смысле, идеи дзена напоминают определенные идеи в современной философии математики. После этого обсуждения вводится основная идея Гёделя — Геделева нумерация, и затем Теорема Гёделя впервые приводится целиком.
Часть II: ЭГБ
Прелюдия... Этот Диалог связан со следующим Оба они основаны на прелюдиях и фугах из Баховского «Хорошо темперированного клавира». Ахилл и Черепаха приносят подарок Крабу, у которого в это время в гостях Муравьед. Подарок оказывается записью «ХТК», и друзья решают сразу же ее прослушать. Во время прелюдии они обсуждают строение прелюдий и фуг, Ахилл спрашивает, каким образом лучше слушать фугу: как одно целое или как сумму разных голосов? Этот спор между холизмом и редукционизмом затем продолжается в «Муравьиной фуге».
Глава X: Уровни описания и компьютерные системы. Обсуждаются разные уровни восприятия картин, шахматных позиций и компьютерных систем. Последние затем объясняются подробно; это включает описание машинных языков, языков ассемблера, языков компилятора, операционных систем и так далее. Далее разговор переходит к другим типам сложных систем, таких как спортивные команды, ядра, атомы, погода и так далее. Возникает вопрос, как много существует промежуточных уровней, и существуют ли они вообще.
…и Муравьиная фуга. Имитация музыкальной фуги: каждый голос вступает с одним и тем же замечанием. Рекурсивный рисунок вводит тему Диалога — холизм и редукционизм. Рисунок составлен из слов, которые, в свою очередь, состоят из меньших слов и так далее На четырех уровнях этой странной картинки появляются слова «ХОЛИЗМ», «РЕДУКЦИОНИЗМ» и «МУ». Затем разговор переходит к знакомой Муравьеда; мадам Мура Вейник — разумная муравьиная колония. Обсуждаются разные уровни ее мыслительных процессов. В этом Диалоге есть множество приемов фуги, для подсказки читателю упоминаются те же самые приемы, звучащие в фуге, которую слушает четверка друзей. В конце «Муравьиной фуги», значительно измененные, появляются темы «Прелюдии».
Глава XI: Мозг и мысль. Тема этой главы — «Как физическая аппаратура мозга может порождать мысли?» Сначала описываются крупномасштабные и мелкомасштабные структуры мозга. Затем выдвигается несколько гипотез об отношении понятий к нейронной деятельности.
Англо-франко-немецко-русская сюита. Интерлюдия, состоящая из трех переводов знаменитого стихотворения «Jabberwocky» Льюиса Кэрролла.
Глава XII: Разум и мысль. Предыдущие стихотворения естественно подводят к вопросу: «Могут ли языки — или даже сам разум разноязычных людей — быть „отображены“ один на другой?» Как вообще возможна коммуникация между мозгами двух разных людей? Что между ними общего? Может ли мозг, в некоем объективном смысле, быть понят другим мозгом? Для возможного ответа используется географическая аналогия.
Ария с различными вариациями. Форма этого Диалога основана на «Гольдберг-вариациях» Баха, а его содержание имеет отношение к теоретико-численным задачам, подобным Гипотезе Гольдбаха. Основная цель этого гибрида — показать, как гибкость теории чисел опирается на тот факт, что поиски в бесконечном пространстве имеют множество вариантов. Некоторые из них оказываются бесконечными, некоторые — конечными, а другие находятся где-то посередке.
Глава XIII: Блуп, Флуп и Глуп. Это названия трех компьютерных языков. Программы Блупа могут осуществлять только предсказуемо конечный поиск, в то время как программы Флупа способны на непредсказуемый или даже бесконечный поиск. В этой главе я стараюсь объяснить понятие примитивно рекурсивных и общерекурсивных функций в теории чисел, поскольку они очень важны для доказательства Теоремы Гёделя.
Ария в ключе G. В этом Диалоге словесно отражена автореферентная конструкция Гёделя. Эта идея принадлежит У. Я. О. Квайну. Диалог служит прототипом следующей главы.
Глава XIV: О формально неразрешимых суждениях ТТЧ и родственных систем. Название этой главы — адаптация заглавия статьи Гёделя 1931 года, где впервые появилась его теорема о неполноте. Тщательно рассматриваются две основные части доказательства. Показано, как из предположения о непротиворечивости ТТЧ вытекает то, что она (или любая похожая система) неполна. Обсуждаются отношения ТТЧ к эвклидовой и неэвклидовой геометрии, и значение теоремы Гёделя для философии математики.
Праздничная кантатата… В которой Ахилл не может убедить скептически настроенную Черепаху в том, что сегодня его день рождения. Его повторные неудачные попытки предвосхищают повторяемость Гёделева аргумента.
Глава XV: Прыжок из системы. Обсуждается повторяемость Гёделева аргумента, из чего вытекает, что ТТЧ не только неполна, но и в принципе непополнима. Анализируется и опровергается интересный аргумент Лукаса, использующего Теорему Гёделя для доказательства того, что человеческая мысль не может быть механизирована.
Благочестивые размышления курильщика табака. В этом Диалоге затрагиваются многие темы, относящиеся к автореферентности и самовоспроизводству. Среди примеров — телевизионные камеры, снимающие сами себя, а также вирусы (и другие подклеточные существа), способные на самосборку. Название Диалога происходит из стихотворения самого Баха, которое цитируется в тексте.
Глава XVI: Авто-реф и Авто-реп. В этой главе обсуждается связь между разными типами автореференции и самовоспроизводящимися объектами (такими, как компьютерные программы или молекулы ДНК). Объясняются отношения между самовоспроизводящимся объектом и внешними механизмами, помогающими этому воспроизводству; особое внимание уделяется отсутствию между ними четкой границы. Тема этой главы — передача информации между различными уровнями подобных систем.
Магнификраб в пирожоре. Это название — игра слов; имеется в виду Баховский «Magnificat в ре-мажоре». Речь идет о Крабе, который, по-видимости, обладает магической способностью различать между истиннными и ложными высказываниями теории чисел. Читая их как музыкальные пьесы, он проигрывает их на флейте и определяет, «красивы» ли они.
Глава XVII: Чёрч, Тюринг, Тарский и другие. Фантастический Краб предыдущего Диалога заменен здесь несколькими реальными людьми с удивительными математическими способностями. Тезис Чёрча-Тюринга, связывающий мозговую деятельность с вычислениями, представлен в нескольких версиях. Все они анализируются с точки зрения их последствий для возможности механического подражания мышлению и программирования на компьютере умения чувствовать и создавать прекрасное. Тема связи мозговой деятельности с вычислениями приводит к таким вопросам как Тюрингова Проблема Остановки или Теорема Истинности Тарского.
ШРДЛУ. Этот Диалог основан на статье Т. Винограда о его программе ШРДЛУ; я изменил только несколько имен. В Диалоге некая компьютерная программа, на довольно впечатляющем языке, беседует с человеком о так называемом «мире кубиков». Кажется, что программа на самом деле понимает тот ограниченный мир, о котором говорит.
Глава XVIII: Искусственный интеллект: краткий обзор. Эта глава начинается с обсуждения знаменитого «теста Тюринга» — предложенного пионером компьютеров Аланом Тюрингом способа определить, «думает» ли машина. Далее мы переходим к краткому обзору истории искусственного интеллекта. Обсуждаются программы, до какой-то степени умеющие играть в различные игры, доказывать теоремы, решать задачи, сочинять музыку, заниматься математикой и пользоваться естественным языком (английским).
Контрафактус. О том, как мы организуем наши мысли, воображая гипотетические варианты реальности. Это умение приобретает иногда странные формы, — как например, в характере Ленивца, этого страстного любителя блинчиков и ненавистника воображаемых ситуаций.
Глава XIX: Искусственный интеллект: виды на будущее. Предыдущий Диалог затрагивает вопрос о том, как информация представлена на различных уровнях контекста. Это приводит к современной идее «фреймов». Для конкретности дан пример того, как зрительные головоломки решаются «методом фреймов». Затем обсуждается важный вопрос взаимодействия понятий вообще, что приводит к разговору о творческих способностях. В заключение дан список моих собственных предположительных «Вопросов и Ответов» на тему ИИ и разума в общем.
Канон Ленивца. Этот Диалог имитирует Баховский канон, в котором один голос повторяет ту же мелодию, что и другой, только «вверх ногами» и вдвое медленнее. Третий голос свободен. Ленивец произносит те же реплики, как и Черепаха, при этом отрицая (с свободном смысле слова) все, что она говорит, и говоря вдвое медленнее. Свободный голос — Ахилл.
Глава XX: Странные Петли или Запутанные Иерархии. Грандиозный водоворот множества идей о иерархических системах и автореферентности. Речь идет о странной «путанице», возникающей, когда система начинает действовать сама на себя, — например, наука, изучающая науку, правительство, исследующее правительственные преступления, искусство, нарушающее законы искусства и, наконец, люди, размышляющие о собственном мозге и разуме. Имеет ли Теорема Гёделя какое-нибудь отношение к этой последней «путанице»? Связаны ли с этой Теоремой свободная воля и самосознание? В заключение Гёдель, Эшер и Бах снова связываются в одно целое.
Шестиголосный ричеркар. Этот Диалог — игра, изобилующая многими идеями, которыми проникнута эта книга. Он является повторением истории «Музыкального приношения», с которой начинается книга. В то же время это «перевод» в слова самой сложной части «Музыкального приношения» — «Шестиголосного ричеркара». Подобная двойственность наделяет «Ричеркар» таким количеством уровней значения, какого нет ни в каком другом Диалоге книги. Фридрих Великий заменен здесь Крабом, фортепиано — компьютерами и так далее. Читателя ожидает множество сюрпризов. В Диалоге снова затрагиваются проблемы разума, сознания, свободной воли, искусственного интеллекта, теста Тюринга и так далее. Он заканчивается косвенной ссылкой на начало книги, таким образом превращая ее в гигантскую автороферентную Петлю, одновременно символизирующую музыку Баха, рисунки Эшера и Теорему Гёделя.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
1. Общий обзор
1. Общий обзор Почти одновременно в трех областях земного шара возникают древнейшие культуры. Это, во-первых, шумеро-вавилонская и египетская культуры и эгейский мир с 4000 г. до н. э.; во-вторых, открытая в раскопках доарийская культура долины Инда третьего тысячелетия
Обзор
Обзор 1. Оценка нигилизма у Ницше 2. и у Достоевского. 3. Его оптимистическая 4. и пессимистическая характеристики. 5. Диагнозы нигилизма 6. в преддверии ничто. 7. Отношение нигилизма к хаосу и анархии, 8. к болезни, 9. которая для него столь же мало типична, 10. как и преступление. 11.
I. ОБЗОР МАТЕРИАЛА
I. ОБЗОР МАТЕРИАЛА Я начну с анализа сократовских диалогов.1. В «Лахете» мы находим «эйдос» употребленным один раз и ни разу «идея». Именно, в 19i d мы читаем: «…мужественных не только в гоплитском, но и в конском и во всем воинском виде (?? ???????? ?? ???????? ?????)», где, по Риттеру,
Обзор
Обзор Так как без осознанного представления о жизни Ницше мы не можем достичь подлинного понимания его идей, есть смысл для начала вкратце напомнить факты[4].Фактическая биография (см. хронологическую таблицу)Ницше родился в семье священника в Рёккене. Священники были в
I. ОБЗОР
I. ОБЗОР В своей древнейшей, известной нам форме йога, похоже, была практикой усвоенного самонаблюдения, интроспекции, или созерцательного сосредоточения, совершаемого совместно со священными ритуалами. Именно такую йогу мы встречаем в четырех Ведах, самых ранних и
I. ИСТОРИЧЕСКИЙ ОБЗОР
I. ИСТОРИЧЕСКИЙ ОБЗОР Предыдущие главы представили постепенное становление индийской духовности со времен Вед до возникновения тайных учений первых Упанишад. Этой главой мы прерываем наше историческое исследование йогической психотехники в лоне индуизма. Здесь мы
I. ОБЗОР
I. ОБЗОР Настоящей главой мы подытожим наше повествование об историческом становлении индуистской йоги, прерванное двумя главами раньше. Все внимание здесь будет сосредоточено на тех открытиях, которые случились в плодотворный дня йоги период от ранних Упанишад с их
I. ОБЗОР
I. ОБЗОР Все единственно Брахман. Нет ничего иного. Аз есмь То. Воистину, Аз есмь То. Аз есмь одно То. Аз есмь одно То. Я один вечносущий Брахман. Я один Брахман, не мирское (сансарин). Я один Брахман. У меня нет разума. Я один Брахман. У меня нет Познания буддхи). Я один Брахман, а
I. ОБЗОР
I. ОБЗОР То, что есть в сей книге, можно также найти и в других, но чего здесь нет, не сыскать нигде. Посему сведущий знает сей труд как сокровищницу всякого философского учения. (3.8.12)Вот так гордо звучат слова сочинителя Йога-васиштха-рамаяны, философского труда примерно из
I. ОБЗОР
I. ОБЗОР «То ты еси» (mam твам aси). «Аз есмь Брахман» (ахам брахма-асми, пишется ахам брахмасми). «Все есть Брахман» (сарвам брахма асти, пишется сарвам брахмасти). Таковы три великих метафизических речения древних упанишадских мудрецов, где они стремятся выразить как раз то,
I. ОБЗОР
I. ОБЗОР Сикхизм, который насчитывает тринадцать миллионов последователей, представляет собой религиозно-духовную традицию, загаженную Гуру Нанаком (1469–1538), который родился в сословии кшатриев («воин») в небольшом селении близ Лахора в Пенджабе. Пракритское слово сикх
Обзор
Обзор Часть I: ГЭБИнтродукция: Музыко-логическое приношение. Книга начинается с истории Баховского «Музыкального приношения». Бах неожиданно посетил короля Пруссии Фридриха Великого. Король предложил Баху тему для импровизации; результат явился основой этого великого
Исторический обзор
Исторический обзор Богатейшие и ужасающие документы относительно спонтанных форм деструктивности нам дают летописи цивилизованных народов. История войн является хроникой безжалостных убийств и пыток, жертвами которых становились и мужчины, и женщины, и дети. Часто
Общий обзор
Общий обзор Вы сказали, что все проявленное является в своей основе безличностным. Как же индивидуальность вписывается в эту картину?Что такое проявленный мир? Это просто внезапное спонтанное одновременное проявление, возникновение в Сознании, в пределах Сознания,
Обзор
Обзор Математика – это не только абстрактный инструмент, но и личное переживание. Всякий раз, когда вы видите сон или работаете со своими фантазиями, вы занимаетесь математикой точно так же, как когда вы считаете своих овец на пастбище.Счет – это абстракция процесса
Краткий обзор
Краткий обзор Прежде чем двигаться вперед, давайте кратко просмотрим, что мы узнали до сих пор. Ранее мы видели, что счет с помощью чисел выглядит как преимущественно бессознательный процесс, который происходит посредством маргинализации некоторых из переживаний,