6. СЛУЧАЙ СИНОНИМИЧНЫХ ЯЗЫКОВ
6. СЛУЧАЙ СИНОНИМИЧНЫХ ЯЗЫКОВ
Во многих случаях новое понимание возникает только благодаря использованию для описания другого языка, даже если при этом не добавляется никакой новой, так называемой «объективной» информации. Поясним это отношение на примере двух доказательств одной математической теоремы.
Каждый школьник знает, что (a + b)2 = a2 + 2ab + b2. Может быть, он знает и то, что это первый шаг в разделе математики, который называется теорией биномов. Само это равенство достаточно хорошо иллюстрируется алгоритмом алгебраического умножения, каждый шаг которого находится в соответствии с определениями и постулатами тавтологии, называемой алгеброй — тавтологии, предмет которой состоит в расширении и анализе понятия «каждый».
Но многие школьники не знают, что это биномиальное равенство имеет геометрическое доказательство (см. рис. 6). Рассмотрим отрезок XY, состоящий из двух частей, a и b. Этот отрезок геометрически представляет число (a+ b), а площадь квадрата, построенного на XY, равна (a + b)2, что и называется возведением в квадрат.
Рис. 6
Этот квадрат можно теперь разделить, отложив длину а вдоль отрезка XY и вдоль одной из прилежащих сторон квадрата и проведя соответствующие прямые параллельно его сторонам. Теперь школьник может заметить, что квадрат разделен на четыре части, а именно, что он состоит из двух квадратов, один из которых имеет площадь а2, а другой b2, и из двух прямоугольников, каждый из которых имеет площадь (a x b) (и, следовательно, общую площадь 2ab).
Таким образом, известное алгебраическое равенство (a + b)2 = a2 + 2ab + b2 оказывается, по-видимому, верным и в евклидовой геометрии. Но, конечно, вряд ли можно было рассчитывать, что отдельные части равенства (a + b)2 = a2 + 2ab + b2 будут отчетливо отделены друг от друга и в переводе на язык геометрии.
Но что это значит? По какому праву мы подставили вместо а так называемую «длину» и другую длину вместо b, а затем предположили, что при их соединении получится отрезок (a + b), и так далее? Можем ли мы быть уверены, что длины отрезков подчиняются арифметическим правилам? Чему научился школьник, узнав формулировку этого старого равенства на новом языке?
В некотором смысле, ничего не добавилось. Когда я показал, что равенство (a + b)2 = a2 + 2ab + b2 выполняется не только в алгебре, но и в геометрии, не было получено никакой новой информации и не было понято ничего нового.
Но значит ли это, что язык как таковой не содержит информации?
Даже если в результате этого небольшого математического фокуса с математической точки зрения ничего не добавилось, я все же убежден, что от знакомства с ним школьник сможет кое-чему научиться. Это вклад в дидактический метод. Открытие (если это открытие), что два языка (алгебра и геометрия) могут переводиться с одного на другой, само по себе является откровением.
Может быть, следующий математический пример поможет читателю лучше понять, что достигается при использовании двух языков. [Об этой для большинства людей неизвестной закономерности я узнал благодаря Гертруде Гендрикс: Gertrude Hendrix, «Learning by Discovery,» The Mathematics Teacher 54 (May 1961): 290–299. (Гертруда Генрикс, «Обучение через открытие», Учитель математики 54 (Май 1961): 290–299.)]
Спросите своих друзей «Чему равна сумма первых десяти нечетных чисел?»
Вероятно, они скажут, что они этого не знают, или начнут складывать ряд чисел:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19.
Покажите им, что:
Сумма первого нечетного числа равна 1.
Сумма первых двух нечетных чисел равна 4.
Сумма первых трех нечетных чисел равна 9.
Сумма первых четырех нечетных чисел равна 16.
Сумма первых пяти нечетных чисел равна 25
И так далее.
Довольно скоро ваши друзья скажут что-нибудь вроде «Тогда сумма первых десяти нечетных чисел должна быть равна 100». Они научились этому трюку, позволяющему складывать последовательности нечетных чисел.
Но попросите их объяснить, почему этот трюк обязательно должен работать, и средний человек, если он не математик, не сможет ответить. (А наше начальное образование таково, что многие не будут даже знать с чего начать, чтобы получить ответ).
В данном случае нужно было заметить различие между порядковым номером данного нечетного числа и его количественным значением, то есть различие в логическом типе! Мы привыкли к тому, что название чисел всегда совпадает с их численным значением [Иначе говоря, можно сказать, что число чисел во множестве — это не то же самое, что сумма чисел в этом множестве. Так или иначе, здесь мы встречаемся с разными логическими типами.]. Но в данном случае, имя — это, конечно, не то же самое, что объект, который оно обозначает.
Сумма первых трех нечетных чисел равна 9, то есть квадрату порядкового имени наибольшего числа в последовательности, которую необходимо просуммировать (в нашем случае, порядковое имя 5 — «3»). Или, если хотите, это квадрат числа чисел в этой последовательности. Вот словесное выражение описанного трюка.
Чтобы доказать, что этот трюк будет работать, мы должны показать, что разность между двумя последовательными суммами нечетных чисел всегда равна разности между квадратами их порядковых имен.
Например, сумма первых пяти нечетных чисел минус сумма первых четырех нечетных чисел должна равняться 52 — 42. В тоже время можно заметить, что разность между этими двумя суммами должна быть последним нечетным числом, добавленным к этому множеству. Иначе говоря, последнее добавленное число должно быть равно разности между квадратами.
Рассмотрим этот вопрос на зрительном языке. Мы должны показать, что при добавлении следующего нечетного числа к сумме предыдущих нечетных чисел эта сумма всегда возрастет ровно настолько, чтобы стать равной квадрату порядкового имени этого нечетного числа.
Представим первое нечетное число (1) одним квадратом:
Представим второе нечетное число (3) тремя квадратами:
Сложим эти два числа друг с другом:
Представим третье нечетное число (5) пятью квадратами:
Добавим это к предыдущей фигуре:
Рис. 7
То есть, 4 + 5 = 9.
И так далее. Зрительное представление позволяет довольно легко объединить порядковые числа, количественные числа и закономерности суммирования рядов.
Итак, мы увидели, что использование геометрической метафоры оказалось весьма полезным для понимания того, как механический трюк превращается в закономерность. Что более важно, школьник осознал разницу между применением трюка и пониманием неизбежной истины, стоящей за этим трюком. И что еще более важно, школьник получил (может быть, не осознавая этого) опыт в переходе от рассуждений внутри арифметики к рассуждениям по поводу арифметики. Не числа, а число чисел.
Именно тогда, по словам Уоллеса Стивенса,
Виноград показался сочнее.
Лиса выскочила из норы.