Геометрия
Геометрия
Чтобы понимать пространство, давайте рассмотрим геометрию – структуру пространства. К счастью, большинство людей понимают геометрию легче, чем алгебру. Геометрия образна; она имеет художественную форму и кажется менее абстрактной, чем формулы алгебры. Например, возьмем алгебраическую формулу c2 = а2 + Ъ2 – формулу Пифагора для самой длинной стороны, или гипотенузы, прямоугольного треугольника. Большинству из нас эта формула, вероятно, кажется более сложной, чем ее геометрический эквивалент, изображение прямоугольного треугольника.
Рис. 26.1 Сравнение геометрии и алгебры
На рисунке 26.1 формула описывается с помощью чертежа. Чертеж дает графическое объяснение формулы. Формула гласит, что для нахождения расстояния между точками 1 и 2, следует найти расстояния а и b, возвести их в квадрат, сложить квадраты и извлечь квадратный корень из суммы. Поскольку геометрия представляет собой карту, она играет центральную роль в описании не только физической Вселенной, но и духовной Вселенной в религии и психической сферы цельности в психологии.
Например, одна из центральных духовных и психологических формул, или геометрических структур, стоящих за нашим поведением, в различных религиозных традициях и в психологии Юнга изображается в виде круга или мандалы – симметричной фигуры из Индии. Юнг считал, что мандала символизирует цель человеческого поведения – цельность или индивидуацию, как он ее называл. Мандала подразумевает, что мы имеем много сторон и должны развивать их в равной мере. Мандалы имеют много форм; они могут быть круглыми или квадратными, звездообразными или продолговатыми, но они всегда симметричны.
Имея симметричный шар, вы можете вращать его в любых направлениях, и его форма не меняется. Квадраты менее симметричны, чем круги. Вы может поворачивать круг или сферу как угодно, и они остаются теми же самими. Чтобы квадрат оставался одним и тем же, вы должны каждый раз поворачивать его точно на четверть оборота. Прямоугольники еще менее симметричны; чтобы они оставались одними и теми же, их приходится поворачивать на 180 градусов. Это справедливо и для крестов; если его перекладина выше основания, то крест симметричен при вращении справа налево или слева направо; при таком вращении его форма остается той же самой. Однако форма меняется, если вы переворачиваете его кверху ногами. Шестиконечная звезда симметрична при повороте на 60 градусов; для пятиконечной звезды угол поворота должен быть немного больше.
Рис. 26.2. Примеры симметричных объектов
В геометрии есть много симметричных структур, которые иллюстрируют нашу глубинную склонность становиться завершенными, цельными существами. Симметрии имеют фундаментальное значение и для законов физики. Немного дальше мы вместе исследуем происхождение этих симметрий.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
I. Платон и геометрия (1957)
I. Платон и геометрия (1957) Во втором издании этой книги я существенно дополнил примечание 9 к главе 6 (с. 308-315). Выдвинутая в этом примечании историческая гипотеза впоследствии получила развитие в моей статье «Характер философских проблем и их научные
§ 39. Геометрия
§ 39. Геометрия Так же на связи положения частей пространства основана вся геометрия. Поэтому она должна была бы быть разумением этой связи; но так как оно, как сказано выше, посредством понятий невозможно, а дается только созерцанием, то каждый геометрический закон
2. Геометрия неевклидова
2. Геометрия неевклидова Лобачевский, обнаружив неевклидову геометрию, разрушил математический аргумент Кантовской трансцендентальной эстетики. Вейерштрасс доказал, что непрерывность не предполагает бесконечно малые величины; Георг Кантор создал теорию
3. Геометрия, эвклидова и неевклидова
3. Геометрия, эвклидова и неевклидова Геометрия проливает не больше света на природу пространства, чем арифметика – на количество населения в США. Геометрия – это целое собрание дедуктивных наук, основанное на соответствующем собрании наборов аксиом. Один набор аксиом
ГЛАВА IV: Непротиворечивость, полнота и геометрия
ГЛАВА IV: Непротиворечивость, полнота и геометрия Смысл явный и неявныйВ главе II мы видели пример того, как смысл — по крайней мере, в относительно простом контексте формальных систем — рождается из изоморфизма между управляемыми правилами символами и вещами реального
Архитектура, геометрия и нумерология
Архитектура, геометрия и нумерология 345. Blackwell, William. Geometry in Architecture. Emeryville (Са), 1984.346. Bloomer, Kent. Nature of Ornament: Rhythm and Metamorphosis in Architecture. New York, 2000.347. Evans, Robin. Te Projective Cast: Architecture and Its Tree Geometries. Cambridge (Mas.), 1995.348. Hautecoeur, Louis. Mystique et architecture: symbolisme du cercle et de la coupule. Paris, 1954.349. Hecht, Konrad. Mass und Zahl in der gotischen
Евклидова геометрия
Евклидова геометрия Евклидова геометрия — это, попросту говоря, тот самый предмет, который мы изучаем в школе как «геометрию». Однако я подозреваю, что большинство людей склонны считать евклидову геометрию областью математики, а вовсе не физической Теорией. Разумеется,
26. Священная геометрия: структура тьмы
26. Священная геометрия: структура тьмы В начале было великое космическое яйцо. Внутри яйца был хаос, и в хаосе плавал Пан Ку, божественный Зародыш. Миф о Пан Ку (Китай, третий век) Большинство из нас, думая о пространстве, обычно представляют себе аморфную пустоту, вроде
Геометрия
Геометрия Чтобы понимать пространство, давайте рассмотрим геометрию – структуру пространства. К счастью, большинство людей понимают геометрию легче, чем алгебру. Геометрия образна; она имеет художественную форму и кажется менее абстрактной, чем формулы алгебры.
Священная геометрия
Священная геометрия В то же самое время, когда в античности были открыты логические формулы и геометрии, существовала и более мифологическая геометрия. Священная геометрия – это тот аспект математики, который не описан в ее истории, но этот аспект будет важен для нас в
Евклидова и неевклидова геометрия
Евклидова и неевклидова геометрия К 1900 г. большинство математиков и физиков уже утратили контакт со священными силами, стоящими за математикой, или с математикой, которая представляет собой описание Вселенной, отражающей саму себя. По существу, пространства физики были
Мнимая геометрия
Мнимая геометрия Эйнштейн понимал, что для описания Вселенной ему нужно нечто большее, чем евклидова геометрия, но не знал, где это найти. К счастью, у него были хорошие друзья, учившие его математике, в которой он нуждался. Он обнаружил, что математики уже давно думали о
Минделл Арнольд
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉