I. Платон и геометрия (1957)
I. Платон и геометрия (1957)
Во втором издании этой книги я существенно дополнил примечание 9 к главе 6 (с. 308-315). Выдвинутая в этом примечании историческая гипотеза впоследствии получила развитие в моей статье «Характер философских проблем и их научные корни» (К. Popper. The Nature of Philosophical Problems and Their Roots in Science // British Journal for the Philosophy of Science, 1952, vol. 3, pp. 124 и след.; впоследствии она была включена в мою книгу «Conjectures and Refutations»). Ее можно сформулировать в таком виде:
(1) Открытие иррациональности квадратного корня из двух, которое привело к краху пифагорейской программы сведения геометрии и космологии (и, по-видимому, всего знания) к арифметике, вызвало кризис греческой математики.
(2) «Начала» Евклида представляют собой не учебник геометрии, а скорее последнюю попытку платоновской школы преодолеть этот кризис путем перестройки всей математики и космологии на фундаменте геометрии (что означало инверсию пифагорейской программы арифметизации) для того, чтобы иметь дело с проблемой несоизмеримости на систематической основе, а не ad hoc.
(3) Именно Платоном была впервые задумана программа, впоследствии реализованная Евклидом: Платон первым осознал необходимость перестройки и, выбрав геометрию в качестве нового фундамента и метод геометрических пропорций в качестве нового метода, выдвинул программу геометризации математики, включая арифметику, астрономию и космологию; именно его идеи легли в основу геометрической картины мира, а, следовательно, и современной науки — науки Коперника, Галилея, Кеплера и Ньютона.
Я высказал предположение, что знаменитая надпись над входом в платоновскую Академию (см. с. 308, (2)) имела в виду эту программу геометризации. (То, что было намерение провозгласить инверсию пифагорейской программы, подтверждает Архит — см. Diels-Kranz, фрагмент А.)
На с. 310 я высказал предположение о том, что «Платон был одним из первых создателей специфически геометрической методологии, цель которой состояла в спасении того, что можно было в математике спасти, и в покрытии издержек «краха пифагореизма», охарактеризовав это предположение как «весьма смелую историческую гипотезу». Я не считаю отныне эту гипотезу столь уж сомнительной. Напротив, теперь я чувствую, что, прочитав заново в свете этой гипотезы сочинения Платона, Аристотеля, Евклида и Прокла, можно получить столько подкрепляющих ее свидетельств, сколько трудно было бы даже вообразить. В дополнение к убедительным фактам, на которые есть ссылка в только что цитированном абзаце, я хотел бы также обратить внимание на то, что уже «Горгий» (451 а/b; с; 453 е) относит обсуждение «четного» и «нечетного» к компетенции арифметики, тем самым четко отождествляя последнюю с пифагорейской теорией чисел, тогда как геометр характеризуется в нем как человек, овладевший методом пропорций (465 b/с). Более того, в другом отрывке из «Горгия» (508 а) Платон не только говорит о геометрическом равенстве (см. прим. 48 к гл. 8), но также вводит неявно принцип, который позднее был развит им во всей полноте в «Тимее» и согласно которому космический порядок есть порядок геометрический. В этой связи из «Горгия» следует также, что термин не ассоциируется у Платона с иррациональными числами, ибо, как сказано в отрывке 465 а, даже умение, или искусство, не должно быть для такой же науки, как геометрия, это верно a fortiori. Я думаю, чтоможно перевести просто как «алогичный» (см. также «Горгий», 496 а/b и 522 е). Эта деталь важна для интерпретации названия утерянного сочинения Демокрита, упомянутого на с. 309.
Моя статья «The Nature of Philosophical Problems and Their Roots in Science» содержит ряд идущих еще дальше предположений, касающихся платоновской геометризации арифметики и космологии в целом, осуществленной им инверсии пифагорейской программы, а также его теории форм.
Добавлено в 1961 г.
Поскольку это «Дополнение» было впервые опубликовано в 1957 г., в третьем издании настоящей книги я почти случайно обнаружил интересное подтверждение сформулированной мною исторической гипотезы (см. пункт (2) первого абзаца этого «Дополнения»). Речь идет об одном месте в комментариях Прокла к Первой книге «Начал» Евклида (ed. Friedlein, 1873, Prologus II, p. 71, 2-5), ясно показывающем, что существовала традиция, рассматривавшая евклидовы «Начала» как платоновскую космологию, т. е. как разработку проблематики «Тимея».
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
1. Геометрия как физика. Геометрия как математика
1. Геометрия как физика. Геометрия как математика Математика родилась как ответ на выдвинутую развитием общественной практики потребность в познании количественных соотношений и пространственных форм объективной реальности. Первоначально не возникало сомнений
§ 39. Геометрия
§ 39. Геометрия Так же на связи положения частей пространства основана вся геометрия. Поэтому она должна была бы быть разумением этой связи; но так как оно, как сказано выше, посредством понятий невозможно, а дается только созерцанием, то каждый геометрический закон
2. Геометрия неевклидова
2. Геометрия неевклидова Лобачевский, обнаружив неевклидову геометрию, разрушил математический аргумент Кантовской трансцендентальной эстетики. Вейерштрасс доказал, что непрерывность не предполагает бесконечно малые величины; Георг Кантор создал теорию
3. Геометрия, эвклидова и неевклидова
3. Геометрия, эвклидова и неевклидова Геометрия проливает не больше света на природу пространства, чем арифметика – на количество населения в США. Геометрия – это целое собрание дедуктивных наук, основанное на соответствующем собрании наборов аксиом. Один набор аксиом
2. Платон
2. Платон а) Разнообразные, спутанные и часто противоречивые материалы из Платона по вопросу о мимесисе мы уже подвергли подробному изучению (ИАЭ III 32 – 56). Повторять здесь этот анализ мы не будем, и приводить кричащим образом противоречивые тексты из Платона мы здесь тоже
11. То же. Платон
11. То же. Платон В сравнении с рассмотренными сейчас авторами Платон занимает совершенно новую позицию. Он чрезвычайно чутко относится не только к самим пропорциям, установленным раньше него, но и к тому непрерывному становлению, которое между ними совершается и которое
2. Платон
2. Платон В своем употреблении термина"стойхейон"Платон, вообще говоря, движется в плоскости еще досократовских установок, но придает им небывалое диалектическое заострение.Стойхейон у Платона есть то, что имеет значение только в связи с какой нибудь цельностью, в
ГЛАВА IV: Непротиворечивость, полнота и геометрия
ГЛАВА IV: Непротиворечивость, полнота и геометрия Смысл явный и неявныйВ главе II мы видели пример того, как смысл — по крайней мере, в относительно простом контексте формальных систем — рождается из изоморфизма между управляемыми правилами символами и вещами реального
ПЛАТОН
ПЛАТОН …стремление обратно, в истинное обиталище души… Наутро София проснулась, словно ее разбудили. Посмотрела на часы. Только начало шестого, а сна ни в одном глазу. Девочка села в кровати.Почему она лежит одетая? И тут вспомнилось вчерашнее. Подставив скамеечку для
Архитектура, геометрия и нумерология
Архитектура, геометрия и нумерология 345. Blackwell, William. Geometry in Architecture. Emeryville (Са), 1984.346. Bloomer, Kent. Nature of Ornament: Rhythm and Metamorphosis in Architecture. New York, 2000.347. Evans, Robin. Te Projective Cast: Architecture and Its Tree Geometries. Cambridge (Mas.), 1995.348. Hautecoeur, Louis. Mystique et architecture: symbolisme du cercle et de la coupule. Paris, 1954.349. Hecht, Konrad. Mass und Zahl in der gotischen
Евклидова геометрия
Евклидова геометрия Евклидова геометрия — это, попросту говоря, тот самый предмет, который мы изучаем в школе как «геометрию». Однако я подозреваю, что большинство людей склонны считать евклидову геометрию областью математики, а вовсе не физической Теорией. Разумеется,
26. Священная геометрия: структура тьмы
26. Священная геометрия: структура тьмы В начале было великое космическое яйцо. Внутри яйца был хаос, и в хаосе плавал Пан Ку, божественный Зародыш. Миф о Пан Ку (Китай, третий век) Большинство из нас, думая о пространстве, обычно представляют себе аморфную пустоту, вроде
Геометрия
Геометрия Чтобы понимать пространство, давайте рассмотрим геометрию – структуру пространства. К счастью, большинство людей понимают геометрию легче, чем алгебру. Геометрия образна; она имеет художественную форму и кажется менее абстрактной, чем формулы алгебры.
Священная геометрия
Священная геометрия В то же самое время, когда в античности были открыты логические формулы и геометрии, существовала и более мифологическая геометрия. Священная геометрия – это тот аспект математики, который не описан в ее истории, но этот аспект будет важен для нас в
Евклидова и неевклидова геометрия
Евклидова и неевклидова геометрия К 1900 г. большинство математиков и физиков уже утратили контакт со священными силами, стоящими за математикой, или с математикой, которая представляет собой описание Вселенной, отражающей саму себя. По существу, пространства физики были
Мнимая геометрия
Мнимая геометрия Эйнштейн понимал, что для описания Вселенной ему нужно нечто большее, чем евклидова геометрия, но не знал, где это найти. К счастью, у него были хорошие друзья, учившие его математике, в которой он нуждался. Он обнаружил, что математики уже давно думали о