1. Назревание принципа континуально–сущностной эманации у философов разных периодов классики
1. Назревание принципа континуально–сущностной эманации у философов разных периодов классики
Об этом назревании необходимо, сказать несколько слов потому, что эманация будет играть огромную роль в позднем эллинизме, то есть в неоплатонизме, а в позднем эллинизме как раз и будет сформулировано последнее и окончательное античное представление о числе.
а) Собственно говоря, уже в знаменитых парадоксах Зенона содержится открытый протест против дробления непрерывной величины на отдельные изолированные части. Ахилл потому не может догнать черепахи, что проходимый им путь, как и путь, проходимый черепахой, все время дробится на меньшие и меньшие отрезки. И так как расстояние между отдельными точками положений Ахилла и черепахи, как бы оно ни было мало, никогда не может стать нулем, то и получается, что Ахилл в конце своего известного продвижения никогда не может оказаться в той же самой точке, в которой находится в этот момент черепаха. Зенон думает, что любое расстояние на прямой есть нечто абсолютно единое, то есть абсолютно нераздельное и непредставимое в виде отдельных точек. Континуум нельзя составить из отдельных различных точек. Парменид вполне определенно понимает свое единое, или"бытие", вовсе не как изолированную ото всего сущность, но то, что вполне раздельно и в этом раздельном остается одним и тем же. Другими словами, это не просто единое, но еще и непрерывное. Любопытно, что самый этот термин"непрерывное"(syneches) употребляется в поэме Парменида несколько раз (B 8, 6. 25). Мелисс (B 7=I 270, 15 – 16) тоже называет элейское единое"вечным","беспредельным"и"совершенно однородным". Термины эти тоже указывают вовсе не на исключение всякой раздельности и разнокачественности, но только на одинаковое присутствие единого и бытия во всем раздельном и разнокачественном. То же и в других текстах Мелисса (A 5=I 260, 9 – 14).
Таким образом, уже элейцы учили о континуальном становлении, то есть о таком текуче–сущностном становлении, которое лишено всякой раздельности (ИАЭ I 331 – 334, 338 – 339).
б) Можно сказать, что античность никогда не расставалась с двумя идеями: бесконечная делимость, постепенно переходящая в сплошное и чистое становление, близкое к нулю и потому граничащее с отсутствием всякой делимости и с превращением этой делимости в сплошную и неделимую текучесть; с другой стороны, все существующее для античного мышления всегда было чем то раздельным, единораздельным целым, структурой, ясно очерченным кристаллом, фигурой и скульптурно оформленным целым, или телом. Совмещение этих двух идей было, можно сказать, основным и заветным намерением греческих философов. И если у элейцев неделимость брала верх, то у Анаксагора мы находим замечательную попытку совместить то и другое. В этом смысле мы и давали раньше (ИАЭ I 320 – 323) характеристику анаксагоровского учения о гомеомериях.
По Анаксагору, все делимо до бесконечности, то есть деление доходит до величин, едва отличных от нуля. С другой стороны, однако, эта стремящаяся к нулю делимость не превращается у Анаксагора в сплошной туман или в пыль, не превращается в непознаваемую мглу. Каждое качество, испытывающее бесконечную делимость, остается у Анаксагора раз и навсегда самим собою. Оно в основе своей уже неделимо. Мало того. Каждое качество содержит в себе всю бесконечность качеств, но каждый раз со своей собственной структурой этой бесконечности. Но и эта структурно определенное качество, взятое само по себе, в свою очередь тоже делимо до бесконечности.
Таким образом, по Анаксагору, все на свете погружено в вечное становление, поскольку оно бесконечно делимо; а с другой стороны, все на свете везде и всюду является неподвижным целым, вечно сохраняющим свою отчетливую фигурность. И эта фигурность, доходящая в своей делимости до какой угодно малой величины, не расплывается до полного своего уничтожения, а, наоборот, остается тем целым, к которому его части могут приближаться как угодно близко. После этого неудивительно, что один немецкий ученый понял учение Анаксагора о гомеомериях как открытие теории бесконечно малых[215].
И вообще, учение Анаксагора очень часто излагается в слишком элементарной и чересчур примитивной форме. Все знают, например, что, по Анаксагору, вначале имеется хаос отдельных частиц, а уже потом ум приступает к оформлению этого хаоса и к превращению его в космос. Но при этом забывают, что никаких малых частей, которые представляли бы собою как нибудь оформленное целое, по Анаксагору, вовсе не существует. Каждая малая часть, по Анаксагору, может стать еще более малой, и это уменьшение никогда не может довести ее до нуля. По Симплицию, Анаксагор (59 B 3) прямо говорил:"В началах нет ни наименьшего, ни наибольшего… Ибо если все во всем и все из всего выделяется, то и из того, что кажется наименьшим, выделится нечто меньше его, и то, что кажется наибольшим, выделилось из чего то большего, чем оно". В том же фрагменте читаем:"И в малом ведь нет наименьшего, но всегда есть еще меньшее. Ибо бытие не может разрешиться в небытие". Также не может существовать и такого абсолютно большого, в отношении чего не существовало бы ничего еще большего (A 45=II 18, 8 – 10). Поэтому если Анаксагор учит, что вначале все вещи были вместе, то есть что вначале был хаос вещей, то это нужно понимать не в том смысле, что каждый такой элемент был какой то определенной конечной величиной, он не был просто конечной величиной, но такой, которая могла бы стать меньше любой заданной величины. Наличие инфинитезимальной интуиции здесь вполне очевидно.
в) Точно так же уже Демокрит, как это установлено в современной науке, вовсе не понимал свои атомы как в полном смысле неделимые величины. Атомы – это только отдельные пункты постепенного уменьшения любой величины. Они являются каждый раз пределом для уменьшения больших величин и началом дальнейшего уменьшения, причем это уменьшение никогда не может достигнуть нуля. Здесь мы по необходимости выражаемся кратко, и желающих узнать подробности современных представлений об античном атоме с точки зрения бесконечно малых мы относим к нашему специальному исследованию (ИАЭ I 441 – 443). А. О. Маковельский[216] подобрал все фрагменты из Демокрита, относящиеся к математике. Из этих фрагментов видно, что если, например, конус пересечь плоскостями, параллельными его основанию, то при равных сечениях получается не конус, а цилиндр, а при неравных сечениях образующая конуса не будет прямой линией, а будет ломаной, состоящей из какого угодно количества отрезков. Другими словами, без признания взаимного непрерывного перехода точек на образующей никак нельзя получить самой этой образующей в цельном виде, то есть в виде прямой. В таких случаях Демокрит, очевидно, взывает к признанию континуально–сущностной непрерывности. Неделимость атома у Демокрита является, собственно говоря, невозможностью представлять отдельные точки непрерывного процесса в виде изолированных остановок на путях континуального становления (в частности, уменьшения). Атом неделим потому, что он несет на себе все становление целиком[217].
Между прочим, среди материалов Демокрита имеется один странный текст, который, как он ни странен, все таки решительно говорит о наличии момента непрерывности в такой, казалось бы, дискретной картине мира, как античный атомизм. Именно, мы читаем (59 A 45=II 18, 1 – 3 Лурье 237):"Все те, которые принимают бесконечное множество элементов, как Анаксагор и Демокрит… говорят, что бесконечное непрерывно касанием". Этот термин"касание"(harh?) уже в древности вызывал многочисленные споры, которых мы здесь касаться не будем и которые приводит С. Я. Лурье в своем издании Демокрита[218]. Не касаясь подробностей, можно сказать, что понимать этот термин можно либо как максимальное приближение одного к другому, либо как слияние одного и другого с исчезновением границы между ними. Собственно говоря, в указанном тексте то и другое понимание касания вполне возможно и относительно Анаксагора и относительно Демокрита.
Если речь идет о максимально близком касании, то, очевидно, здесь мы имеем вполне определенный намек на использование принципа бесконечно малого приближения. И в отношении атомов Демокрита это необходимо признать потому, что, согласно общему учению Демокрита, атомы не могут соприкасаться. Но другое понимание касания тоже возможно. И это будет в согласии с учением Демокрита о неделимости атома, то есть о слиянии составляющих его частей в одно непрерывное целое. При этом любопытно то, что атом, в сущности говоря, вовсе не характеризуется какой нибудь величиной, потому что весь мир тоже есть атом (Демокрит A 47). Получается, таким образом, что непрерывность имеет у Демокрита универсальное значение и характерна для всего космоса, как и у Гераклита.
Самое же главное то, что приведенный текст гласит не только о Демокрите, но и об Анаксагоре. Здесь сама собой напрашивается следующая схема. Именно, если у элейцев на первый план выдвигается непрерывность и все прерывное, оставаясь прерывным, несет на себе печать непрерывного бытия, то у Демокрита – наоборот: если у атомистов на первый план выдвигаются прерывные атомы, то непрерывность внутри самих же этих атомов, хотя она и остается всюду непрерывной, все же несет на себе печать атомистической прерывности. Что же касается Анаксагора, то он явно занимает среднее место между элейцами и Демокритом: каждая гомеомерия делима, поскольку содержит в себе всю бесконечность элементов, и вполне неделима, то есть вполне непрерывна, поскольку руководящим и оформляющим принципом каждой гомеомерии является какой нибудь один элемент, то есть одно качество, одинаково и непрерывно присутствующее во всех вторичных элементах, составляющих гомеомерию. Другими словами, так или иначе, но континуально–непрерывный принцип есть то, с чем никогда не расставалась античная философия.
г) Нам хотелось бы только внести здесь уточнение, без которого инфинитезимальное понимание античного атомизма оказывается самой невероятной модернизацией.
С. Я. Лурье в своей очень интересной и ученой книге (эта книга была названа у нас выше), прекрасно понимая, что все существующее делимо до бесконечности, приписывает Демокриту такой взгляд, что атом вполне делим до бесконечности, если этот атом понимать физически, и совершенно неделим, если его понимать математически. Однако этот автор забывает, что и всякая вообще вещь, поскольку она есть нечто, тоже неделима: дом можно перестраивать сколько угодно, но он есть все таки нечто одно на такой то улице, и с таким то номером, и принадлежащее такому то владельцу. Можно прямо сказать, что Демокрит вовсе не в этом смысле говорил о неделимости атомов. Атом действительно неделим, как и всякая вещь вообще. Но Демокрит понимает его как результат дробления вещи. Поэтому он неделим в смысле того предела, к которому стремится уменьшающаяся вещь. Физически он тоже делим, поскольку делимость всегда бесконечна. Но как идея, как смысл полученного результата деления, он вполне неделим. Вот это понятие предела и является свидетельством того, что атомисты обязательно мыслили бесконечное деление вещей, но с сохранением каждого результата этого деления в качестве цельной неделимости. Любопытно, что и сам С. Я. Лурье вовсе не чужд понятия предела в обрисовке атомистической теории. Он пишет[219]:"И уже Демокриту должна была принадлежать своеобразная примитивная"теория пределов", дававшая возможность перебросить мост между формулами недоступного чувствам и формулами чувственного мира". Но можно только пожалеть, что С. Я. Лурье так мало разработал эту атомистическую теорию пределов. Правда, теория эта скорее является нашим выводом из теории Демокрита, чем прямой формулировкой первоисточников. Но как ни квалифицировать теорию пределов у греческих атомистов, она там все же была. И потому можно считать вполне доказанным наличие у греческих атомистов принципа непрерывного и сплошного, континуального становления, несмотря на четкую, единораздельную и геометрическую фигурность атома.
Такое понимание инфинитезимализма было проведено нами выше в своем месте (ИАЭ I 435 – 436). В изложении С. Я. Лурье очень трудно добиться ясного представления о том, что такое античный атом. Но, повторяем, в книге этого автора очень много ценных, хотя и разбросанных, античных текстов, говорящих на тему о континуальном становлении как и о приближении переменной величины к ее пределу. Таковы, например, важные тексты, углубляющие наше представление об Архимеде, Евклиде и Евдоксе[220].
В итоге необходимо признать, что инфинитезимальная значимость античного атома вполне доказана в нашей современной науке о греческих атомистах. Мы только настаиваем на том, что без понятия предела античный атом является малопонятным и исторически ненужным понятием. Больше того. Поскольку у Демокрита мы не находим никаких точных определений и никаких формул, то весь античный атомизм можно считать только отдаленной мечтой и отдаленным пророчеством новоевропейского учения о бесконечно малых. А если это так, то античный атом можно считать даже некоторого рода интегралом, поскольку этот атом есть не что иное, как предел суммы бесконечно малых приращений (или уменьшений).
С. Я. Лурье, затративший столько времени на поиски теории бесконечно малых у греческих атомистов, удивительным образом совершенно обходится без понятия предела. И метод исчерпывания у Евдокса, и метод исчерпывания у Евклида и Архимеда[221] С. Я. Лурье ухитряется излагать без всякого намека на теорию предела.
Поэтому не только основной труд С. Я. Лурье, о котором мы говорили выше, но и его книга об Архимеде страдает одним принципиальным недостатком, а именно неясностью конечных выводов. Интересно, что у С. Я. Лурье имеется даже целая глава, проводящая аналогию с нашей современной математикой и, в частности, с учением о кратных интегралах. Но, во–первых, здесь тоже нет ни слова ни о пределе суммы бесконечно малых приращений, ни вообще о пределе. Во–вторых, сам же С. Я. Лурье аннулирует свою аналогию атома Демокрита с двукратным интегралом следующими словами:"Но эта аналогия не полная и не очень плодотворная"[222]. У С. Я. Лурье имеется также целая глава о значении Архимеда в истории математики[223].
Но в этой главе излагаются взгляды многочисленных ученых, древних и новых, по этому вопросу; а как сам автор расценивает это значение, остается неизвестным.
Наконец, относительно понятия предела нельзя возражать указанием на отсутствие соответствующего термина у Евдокса, Демокрита, Евклида или Архимеда. Ведь термин"бесконечно малое"тоже отсутствует у этих мыслителей.
И тем не менее С. Я. Лурье считает должным ввести этот термин даже в заглавие своей книги. Нужно твердо помнить, что все эти инфинитезимальные представления вовсе не содержатся у названных мыслителей буквально. Их мы домысливаем только сами же, чтобы уяснить сущность дела. Если же угодно гоняться даже и за терминами, то тогда придется считать основателем античного инфинитезимализма вовсе не этих мыслителей, но Платона.
д) Подлинным основателем учения о бесконечно малых и о континууме является Платон, который сейчас и будет нами обсуждаться. Но справедливость заставляет сказать, что было еще одно имя периода Сократа и Платона, с которым необходимо связывать раннюю и не философскую, не критическую, а еще только чисто фактическую эпоху античного учения о континуальном приближении к пределу. Именно, был софист Антифонт, который, между прочим, выступает у Ксенофонта среди собеседников Сократа. У этого Антифонта, как гласят очевиднейшие источники (B 13D), прямо имеется рассуждение о совпадении с окружностью круга, вписанного в этот круг многоугольника при достаточно большом увеличении числа его сторон. Едва ли тут было какое нибудь философское обоснование учения о бесконечно малых. Вероятно, это было у Антифонта покамест еще примитивным и только чисто математическим соображением. Чисто философская проблема в этой области в отчетливой форме ставится только у Платона.
е) Принцип континуального становления не в математической, но в принципиально философской форме в яснейшем виде установлен Платоном. В"Тимее"(47e – 53c) мы находим учение о первичной материи (термин"материя"тут пока отсутствует), которая совершенно лишена всяких качеств и является сплошным и нераздельным становлением. А то, что такого рода становление формулируется Платоном и для мира идей, то есть для самого разума, это мы уже говорили выше (часть пятая, глава II, §4, п. 7).
В результате всего этого, если иметь в виду категориальную точность, то подлинным основателем античного учения о бесконечно малых необходимо считать, как сказано, не Анаксагора и не Демокрита, а именно Платона. Наконец, у Платона в"Филебе"(ИАЭ II 265 – 274, ср. также таблицу на с. 679) имеется даже и соответствующая терминология ("предел","беспредельное"и"смешанное").
Здесь мы, однако, должны сказать, что платоновские термины"предел","беспредельное"и"смешанное"нужно еще уметь расшифровать.
Именно, платоновский термин peras хотя и можно перевести как"предел", это вовсе не есть предел в нашем смысле слова. Мы понимаем под пределом какую то такую постоянную величину, расстояние которой от той переменной величины, которая к ней приближается, может стать менее любой заданной величины. У Платона это, собственно говоря, не предел, но, скорее,"граница". В"Тимее"(55c) этот термин употребляется в рассуждениях о границе космоса, а в"Софисте"(252b) говорится о сведении элементов к ограниченному числу (eis peras). Но еще яснее этот платоновский термин выступает в"Пармениде", где прямо говорится, что"конец и начало образуют предел (peras) каждой вещи"(137d) и что предел (peras) есть то целое, что охватывает части (145a). Другими словами, обычный перевод данного платоновского термина как"предел"чрезвычайно неточен. Это даже и не есть просто"граница". Это такая граница, которая не только отделяет одну вещь от другой, но которая и внутри самой вещи отграничивает одну ее часть от другой части. Правильный перевод был бы"раздельность"или"расчлененность". И поэтому, когда мы приписываем Платону учение о математическом пределе, мы имеем в виду вовсе не термин peras, в котором нет никакого намека на такую переменную величину, которая бесконечно и непрерывно стремится к определенной постоянной величине, приближаясь к ней как угодно близко. Следовательно, наше понятие предела нужно связывать вовсе не с платоновским термином"предел", а с терминами"беспредельное"и"смешанное".
Это"беспредельное"не только квалифицируется у Платона как то, что противоположно раздельности ума и потому является"блуждающей"или"беспорядочной причиной"(Tim. 46e, 48a). В противоположность всегда самотождественному принципу это другой принцип, когда имеется в виду принцип"рассеянного в возникающих и бесконечно разнообразных вещах и превратившегося во множество"(Phileb. 15b) или просто"беспорядочность", ataxia (Tim. 30a). Яснее же всего об этой беспредельности говорится там, где удовольствие, в отличие от упорядоченного ума, трактуется как беспорядочное становление, в котором нет ни начала, ни середины, ни конца (Phileb. 31a). Таким образом, если мы говорим, что именно у Платона имеется учение о континуально–сплошном становлении, то самым ярким доказательством этого является платонический термин apeiron.
Но мало и этого. Дело в том, что так называемое"смешанное"уже по самому своему названию свидетельствует о наличии в нем как расчлененной единораздельной цельности, так и континуально–непрерывного становления. В данном случае речь идет у Платона, очевидно, о сплошном и непрерывном переходе одной части целого к другой его части, так что такое прерывно–непрерывное целое является уже пределом в современном математическом смысле слова, то есть пределом суммы бесконечно малых приращений, происходящих внутри того целого, частями которого они являются.
Итак, то, что именно Платон является в античности основателем терминологически зафиксированного учения о бесконечно малых, можно считать, доказанным.
ж) Ни Платону, ни Аристотелю не повезло в смысле признания за ними предчувствия теории бесконечно малых. Из Платона прежде всего излагают его учение об идеях, а из Аристотеля – прежде всего учение о форме и материи.
Но обыкновенно очень мало обращают внимания на то, что и у того и у другого мыслителя имеется весьма осязательная попытка мыслить бесконечно малое и связанное с этим учение о континуально–сущностном становлении, то есть о континууме.
Чтобы соблюсти параллелизм между Аристотелем и Платоном в данном вопросе, укажем на такие категории Аристотеля, как единое и беспредельное.
О едином у Аристотеля имеется обширное рассуждение в"Метафизике"(V 6). Кто проштудирует эту главу, тот убедится в правильности нашей характеристики Аристотеля как платоника, но только дистинктивно–дескриптивного характера. В этой главе даются очень тонкие дистинкции, которые даже трудно формулировать в систематическом виде. Непрерывность, как и у Парменида, трактуется здесь в качестве разновидности единого. Но в этом тексте (1016a 4 – 6) дается покамест еще слишком узкое определение непрерывности:"Название непрерывной дается той вещи, у которой движение, если ее взять как таковую, одно и иначе [чем одно] быть не может; движение же бывает одно у той вещи, у которой оно неделимо, при этом неделимо – во времени". Таким образом, непрерывность определяется здесь как такое единое, которое остается самим собою в движении вещи, когда движение этой вещи неделимо во времени.
Более подробное, но зато и более общее учение о непрерывности мы находим у Аристотеля в его"Физике"(V 3). Это учение можно изобразить при помощи следующей таблицы[224].
Эта таблица настолько ясна сама по себе, что едва ли требует пояснения. Однако это пояснение мы все таки сделаем.
Именно, нужно взять какой нибудь тип непрерывности. В предыдущей цитате из"Метафизики"определенно имелось в виду время. В настоящей же таблице мы имеем в виду другой тип континуума, а именно пространство. Но, собственно говоря, Аристотель имеет в виду вообще любую непрерывность, а для непрерывности необходимо как то, что именно непрерывно, так и тот процесс, в результате которого получается непрерывность. Поэтому непрерывностью является не только то или другое"место", о непрерывном появлении которого речь, но и сам процесс этого появления, то есть"изменение". Если иметь в виду пространственное положение, то отдельные его точки можно брать либо отдельно одна от другой, либо вместе. Но для процесса изменения необходимо брать раздельные точки. В таком случае, если эти точки раздельны, но погружены в процесс изменения, то необходимо признать и нечто промежуточное между ними, а также и следование одной точки за другой в данном изменении. Но при этом мало будет одного следования. Необходимо использовать еще другую категорию"места", а именно категорию"вместе", дающую в более развитом виде категорию"касание". Поэтому если объединить полученное нами следование с касанием, то возникнет"смежное". Однако и"смежное"тоже еще слишком раздельно. Надо, чтобы в этом смежном слились все границы, которые отделяют одно смежное от другого. Вот тогда то и получится непрерывность.
Во всем этом рассуждении Аристотеля о непрерывности заслуживает огромного интереса попытка Аристотеля понять континуум не глобально, но структурно. Только для этого и вводились у Аристотеля такие понятия, как"раздельно"и"вместе"или"следование"и"касание". Континуум изображен у Аристотеля структурно, хотя с первого взгляда никакой структуры нет ни во временном протекании, ни в глобальной внеположности пространства. На самом же деле эта глобальность тоже имеет свою структуру подобно тому, как куча песка бесформенна в сравнении с раздельными вещами, но на самом деле она тоже имеет свою форму, а именно форму кучи. Континуум – не просто пустое поле неизвестно чего. Тут есть и своя различимость, и свое следование различных точек, и своеобразный тип их соприкосновения. А иначе континуум не будет иметь никакой структуры.
Если читателю угодно найти у Аристотеля краткую формулу непрерывности, то вышеприведенное рассуждение из"Физики", (V 3) кратко, отчетливо и суммарно дается в том же трактате в другом месте (VI 1, 231a 20 – b 6).
В предыдущем мы исходили из тех рассуждений Аристотеля, в которых он конструирует свою непрерывность как разновидность единого. Но у Аристотеля имеется еще и такое рассуждение, где он рассматривает непрерывность как разновидность другой платоновской категории, а именно как разновидность беспредельности, апейрона. Это – в другом месте той же"Физики"(III 4 – 8).
Беспредельное, по Аристотелю, то, что может безо всякой остановки увеличиваться или уменьшаться. Но в таком виде беспредельность не может характеризовать собою всю картину действительности. Ведь беспредельность есть только материя, которая и на самом деле может быть и тем, и другим, и третьим, и вообще чем угодно, являясь, таким образом, только потенцией действительно существующего. Но действительно существующее есть также еще и форма; придающая вещам их определенность и совершенство, что и делает их целостными. Следовательно, беспредельное"скорее подходит под определение момента, чем целого, так как материя есть момент целого, как медь для медной статуи"(6, 207a 27 – 29). Но ведь космос, по Аристотелю, пространственно ограничен; он совершенен, целостен и в этом смысле вполне конечен (ИАЭ IV 270 – 273). Как же в таком случае совмещается в космосе беспредельное и предельное? На этот вопрос можно ответить только так, что граница космоса есть постоянная величина; а то, что находится внутри космоса, бесконечно стремится к этой границе, то есть может отстоять от нее на расстояние, меньшее любой заданной наперед величины. Другими словами, Аристотель тут тоже пророчествует о теории бесконечно малых и, значит, тем самым о континууме.
Наконец, вся упомянутая у нас сейчас VI книга"Физики"посвящена прямо доказательству того, что континуум нельзя составить из отдельных точек, будь то во времени, будь то в пространстве, будь то в движении.
В этой связи Аристотель дает сокрушительную критику всех попыток дробить непрерывность на отдельные прерывные отрезки, будь то апории Зенона, будь то атомизм Левкиппа и Демокрита. При этом подобного рода дискретные конструкции Аристотель понимает слишком буквально. Ведь из апорий Зенона именно вытекает требование о невозможности дробления континуума, а из атомизма Левкиппа и Демокрита вытекает требование о невозможности только одного дискретного представления о действительно существующем.
Между прочим, во многих отношениях аналогий к VI книге"Физики"может считаться трактат"О неделимых линиях", принадлежащий либо самому Аристотелю, либо кому нибудь из его учеников[225]. Если миновать детали, то аргументация здесь сводится к следующему.
Именно, если две линии пересекаются, то для всех очевидно, что они пересекаются только в одной точке, принадлежащей одновременно обеим этим линиям. Но такое окончательное влияние двух предметов возможно только в том случае, если эти предметы не состоят из разных частей, поскольку предметы, состоящие из нескольких частей, и соприкасаются между собой не в одной, но во многих точках; и этих точек соприкосновения в данном случае столько, сколько имеется частей в соприкасающихся предметах. Значит, две линии могут пересекаться в одной точке только при условии их неделимости, то есть при условии их непрерывности. На наш взгляд, здесь мы находим тоже солидно обоснованное представление о континуально–сущностной природе даже такого простого геометрического элемента, как линия.
Такого рода континуально–сущностных рассуждений или намеков на них мы можем найти у Аристотеля немало. Здесь мы коснулись только главнейшего. Впрочем, для всей этой проблемы даже и не нужно искать специальных рассуждений у Аристотеля. Даже самые общие концепции Аристотеля немыслимы без континуально–сущностной интуиции. Таковы концепции умопостигаемой материи (ИАЭ IV 56 – 68), потенции, энергии и энтелехии (92 – 94), ставшей чтойности (94 – 95) и четырехпринципной структуры каждой вещи (599 – 603).