10. Главнейшие имена. Пифагор, Гиппас, Архит и Евдокс
10. Главнейшие имена. Пифагор, Гиппас, Архит и Евдокс
Было бы очень важно ясно представлять себе историю развития пифагорейского учения о гармонии. Однако эта тысячелетняя история представлена в источниках весьма запутанно и противоречиво, так что требуются большие усилия мысли для характеристики этой истории. По данному вопросу создалась огромная научная литература, результаты которой удачно формулирует Б.Л. ван дер Варден[275]. Этими выводами Б.Л. ван дер Вардена необходимо воспользоваться с привнесением также и наших собственных дополнений, и наших собственных интерпретаций.
а) Несмотря на все выдумки и позднейшую фантастику о Пифагоре, можно утверждать, что в историческом смысле личность эта все-таки весьма древняя, хотя и весьма трудно приписывать Пифагору всю изложенную у нас гармоническую теорию целиком. Критическое представление о Пифагоре как результат современных о нем исследований читатель может найти в нашей статье "Пифагор" в томе "Философской энциклопедии", а также и в ИАЭ I 263 – 316 и VI 9 – 82. Можно вполне утверждать, что в нерасчлененном и неразвитом виде с весьма существенным преобладанием религиозно-нравственной теории, а в особенности также и соответствующей практики, музыкальная гармония уже была достоянием самого раннего периода пифагорейства. Но если говорить специально о Пифагоре, то едва ли можно будет сказать что-нибудь большее.
б) Совсем другое дело – ученики Пифагора. Уже Гиппас Метапонтийский – и это еще в VI веке до н.э. – не только знает, что такое кварта, квинта и октава, но прибавляет к ним двойную октаву и дуодециму (соединение октавы с квинтой). Кроме того, он уже пользуется для этого экспериментами с натяжением и разделением струны, а также впервые использует с этой же целью диски одинаковой формы, но разной толщины. Как мы имели случай указать, Гиппас уже формулирует три гармонические пропорции. А поскольку в основе всего космоса у него находится огонь и движение этого огня, то можно предполагать, что ему были свойственны также и космологические рассуждения с применением теории гармонии. Немногочисленные фрагменты по Гиппасу собраны у Дильса (18, фрг. 7 – 15, из которых необходимо особо выделить общие рассуждения Гиппаса о душе и консонансах – ИАЭ I 264, 273). Одновременно с Гиппасом действовал музыкант Лас Гермионский, который не только учил о подвижности тонов, но и производил эксперименты (вероятно, впервые) с пустыми и в той или иной мере наполненными сосудами (в указанной главе Дильса фрг. 13).
в) Продолжателем Гиппаса явился Архит Тарентский, старший современник и один из учителей Платона. Этот Архит прежде всего стал понимать тоны в более широком смысле, чем те, которые издаются только инструментами. Так, он прямо объявил их результатом движения воздуха и, не имея представления о нашей современной волновой теории, тем не менее прямо говорил о колебаниях и скорости воздушных движений (47 B 1; A 22, 19a; ср. A 23).
Далее, Архит продолжил (B 2) и уточнил теорию трех пропорций у Гиппаса с применением гармонической средней к квинте, в результате чего получались большая (5:4) и малая терции (7:6), а также и к кварте (с ее интервалами 8:7 и 7:6). В связи с этим у Архита возникла теория трех звукорядов – диатонического, хроматического и энгармонического (A 16). В результате подобных числовых выкладок у Архита возникало и более детальное представление о кварте и квинте и октаве (A 17), а также получалась большая таблица возможных консонансов вообще (A 16).
г) После Гиппаса и Архита удобно будет назвать имя Евдокса Книдского, более подробное суждение о котором читатель найдет у нас ниже, в разделе о континууме. Этот Евдокс интересен тем, что своим учением об "исчерпывании" он ввел во всю античную философию очень важную концепцию непрерывного становления, противоположного неподвижности абстрактных идей и чисел. Сейчас мы не будем приводить тексты из этого Евдокса (представление о них можно получить из указанного у нас сейчас места этого тома). Но здесь очень важна та новость, что все формулированные до Евдокса пропорции он погружает в непрерывное становление, что особенно важно для музыки, в которой как раз бывает часто весьма трудно оперировать только с конечными и вполне дискретными числами. Как оперирует Евдокс с самими пропорциями, представление об этом можно получить по тому же Ван дер Вардену[276]. Здесь же мы ограничимся указанием только на то, что в условиях применения теоретико-числовых операций к музыке средняя гармоническая, например, вовсе не могла быть выражена рациональными отношениями между тонами, так что волей-неволей приходилось признавать подвижность и вполне иррациональную текучесть этой средней гармонической. Поэтому концепция Евдокса исторически имела, можно сказать, огромное значение. Между прочим, это значение Евдокса для понимания музыкально-числовых отношений странным образом отсутствует у ван дер Вардена.