VIII
Эти последние соображения могут быть полезны для расширения нашего анализа на проблему применимости исчислений логики и арифметики, ибо до сих пор (следуя проф. Райлу) мы рассматривали только применимость правил вывода.
Мне кажется, построение так называемых «логических исчислений» вызвано, главным образом, стремлением создавать такие языки, относительно которых можно «формализовать» все те правила вывода, которые мы интуитивно знаем, как осуществлять, иначе говоря, показать, что мы осуществляем выводы в соответствии всего лишь с несколькими общезначимыми правилами вывода. (В качестве правил образа действий эти правила вывода говорят об исследуемом языке или исчислении. Следовательно, они формулируются не в самом исследуемом исчислении, а в так называемом «метаязыке» этого исчисления, т.е. в языке, на котором мы говорим о самом исчислении.) Например, силлогистическую логику можно рассматривать как попытку построить такой язык, и многие ее приверженцы до сих пор убеждены в том, что попытка удалась и что все действительно общезначимые выводы формализованы в ее фигурах и модусах. (Мы видели, что это не так.) Для достижения этой цели были построены другие системы (на-
351
пример, Principia Mathematica*), которым удалось формализовать практически все общезначимые правила вывода, выполняемые не только в обыденных рассуждениях, но и в математической аргументации. Задачу построения такого языка или исчисления, в котором можно было бы формализовать все общезначимые правила вывода (отчасти с помощью логических формул самого исчисления, а отчасти с помощью нескольких правил вывода, относящихся к этому исчислению), пытались рассматривать как фундаментальную проблему логики. Теперь есть основания считать эту проблему неразрешимой, по крайней мере, если для формализации относительно простых интуитивных выводов мы не разрешаем использовать процедуры совершенно иного характера (например, выводы из бесконечного класса посылок). В настоящее время положение таково: хотя для любого данного общезначимого интуитивного вывода можно построить язык, позволяющий формализовать этот вывод, нельзя построить язык, позволяющий формализовать все общезначимые интуитивные выводы. Эта интересная ситуация, которую, насколько мне известно, впервые рассмотрел Тарский, учитывая исследования Геделя, имеет отношение к нашей проблеме, поскольку показывает, что применимость каждого исчисления (в смысле его пригодности в качестве языка, относительно которого можно сформулировать каждый интуитивно общезначимый вывод) в той или иной степени ограничена.
Теперь я обращаюсь к нашей проблеме применимости, ограничившись, на первое время, логическими исчислениями, точнее, утверждаемыми формулами логических исчислений. Почему эти исчисления, которые могут включать в себя арифметику, применимы к реальности?
Я попробую дать ответ на этот вопрос в виде трех утверждений.
(а) Как правило, эти исчисления представляют собой семантические системы4, т.е. языки, предназначенные для описания определенных фактов. Если они служат этой цели, то в этом нет ничего удивительного.
* Начала математики (лат.). — Примеч. ред. (352:)
(б) Они могут быть построены таким образом, что не достигают этой цели. Это видно из того факта, что некоторые исчисления, например, арифметика натуральных или действительных чисел, пригодна для описания одних фактов, но не годится для описания других фактов.
(в) В той мере, в которой исчисление применимо к реальности, оно утрачивает характер логического исчисления и становится описательной теорией, которую можно опровергнуть эмпирически; если же его истолковывают как неопровержимое, т.е. как систему логически истинных формул, а не как описательную научную теорию, оно не применимо к реальности.
В данном разделе мы коротко рассмотрим лишь (б) и (в), замечание относительно (а) будет высказано в следующем разделе.
Обратившись к (б), можно заметить, что исчисление натуральных чисел используется для подсчета бильярдных шаров, пенсов или крокодилов, в то время как исчисление действительных чисел дает средства для измерения континуальных величин, таких как геометрические расстояния или скорости. (Это становится особенно ясно в теории действительных чисел Брауэра.) Мы не можем сказать, например, что в нашем зоопарке имеется ? крокодилов. Для подсчета крокодилов мы пользуемся исчислением натуральных чисел. Но для того чтобы установить, на какой географической широте расположен наш зоопарк, или его расстояние от Гринвича, нам может потребоваться число ?. Поэтому трудно согласиться с мнением о том, что любое из исчислений арифметики применимо к любой реальности (кажется, на этом мнении основывается та проблема, которую мы обсуждаем на нашем симпозиуме).
Теперь обратимся к (в). Суждение типа «2 + 2 = 4» можно применять, например, к яблокам, в разных смыслах, из которых я рассмотрю только два. В первом смысле утверждение «2 яблока + 2 яблока = 4 яблока» считается неопровержимым и логически истинным. Однако оно столь же мало описывает какие-то факты относительно яблок, как и утверждение «Все яблоки есть яблоки». Подобно последнему утверждению, оно (353:) является логической тавтологией: единственное различие состоит в том, что оно опирается не на определения знаков «все» и «есть», а на определения знаков «2», «4», «+» и «=». (Эти определения могут быть явными или неявными.) В этом случае мы могли бы сказать, что данное применение является не истинным, а мнимым, что здесь мы не описываем какую-то реальность, а лишь утверждаем, что один способ описания реальности эквивалентен другому.
Более важным является применение во втором смысле. В этом смысле «2 + 2 = 4» означает, что если кто-то положил в корзину два яблока, потом еще два и ничего не вынимал из корзины, то в корзине окажется четыре яблока. При такой интерпретации утверждение «2 + 2 = 4» помогает нам вычислять, т.е. описывать определенные физические факты, и символ «+» представляет некоторое физическое действие — добавление одних предметов к другим. (Здесь мы видим, что логический символ иногда можно интерпретировать дескриптивно5.) Но в этой интерпретации утверждение «2 + 2 = 4» становится скорее физической, нежели логической теорией. И поэтому мы уже не можем быть уверенными в том, что оно останется универсально истинным. Оно справедливо для яблок, но едва ли справедливо для кроликов. Если вы сунете в клетку 2 + 2 кроликов, то вскоре можете обнаружить там 7 или 8 кроликов. Оно неприменимо и к таким вещам, как капли. Если вы накапаете в бутылку 2 + 2 капель, то вы никогда не найдете там четырех капель. Иными словами, если вас удивляет, что «2 + 2 = 4» не всегда применимо в мире, то ваше удивление легко устранить. Пара кроликов разного пола или несколько капель воды служат моделью такого мира. Если вы отвечаете, что эти примеры не являются подходящими, поскольку с кроликами и каплями что-то происходит и поскольку равенство «2 + 2 = 4» применимо только к таким объектам, с которыми ничего не происходит, то я скажу, что тогда вы имеете дело не с «реальностью» (ибо в «реальности» все время что-то происходит), а с абстрактным миром неизменных объектов. В той мере, в которой наш реальный мир похож на абст-
354
рактный мир, в котором наши яблоки не гниют, кролики и крокодилы не размножаются, иными словами, в той мере, в которой наши физические действия похожи на чисто логическую или арифметическую операцию сложения, арифметика, конечно, будет применима. Но это утверждение тривиально.
Аналогичное утверждение можно высказать относительно сложения измерений. Отнюдь не является логически необходимым, что два прямых стержня длиной а, будучи сложены своими концами, дадут длину 2а. Легко вообразить себе мир, в котором стержни ведут себя согласно законам перспективы, т.е. точно так же, как они ведут себя в зрительном поле или на фотографии, — мир, в котором они сокращаются в направлении от определенного центра. В отношении сложения определенных измеряемых величин, например, скоростей, мы живем именно в таком мире. Согласно специальной теории относительности, обычное сложение измерений неприменимо к скоростям (т.е. ведет к ложным результатам) и должно быть заменено другим. Конечно, можно не соглашаться с тем, что обычное вычисление суммы неприменимо к скоростям, и сопротивляться любому его изменению. Это равнозначно утверждению о том, что скорости должны складываться обычным образом, или, иными словами, что их следует определять так, чтобы они удовлетворяли обычным законам сложения. Однако в этом случае скорости уже не будут определяться эмпирическими измерениями (мы не можем определять одно понятие двумя разными способами), и наше исчисление будет неприменимо к эмпирической реальности.
Проф. Райл помог нам рассмотреть проблему посредством анализа слова «применимо». Мои последние замечания можно рассматривать как дополнительную попытку подойти к решению проблемы посредством анализа слова «реальность» (а также различия между логическим и дескриптивным использованиями символов). Я убежден в том, что всегда, когда мы сомневаемся, относятся ли наши утверждения к реальному миру, мы должны спросить себя, готовы ли мы признать их эмпирическую опровержимость. Если мы решили защищать (355:) наши утверждения, несмотря на опровержения (доставляемые кроликами, каплями или скоростями), то мы не говорим о реальности. Мы говорим о реальности только в том случае, когда готовы признать опровержения. Пользуясь словами проф. Райла, мы могли бы сказать: только в том случае, когда мы знаем, как учесть опровержение, мы знаем, как говорить о реальности. Если мы хотим выразить эту готовность или «знание как», то опять-таки должны сделать это с помощью некоторого правила образа действий. Ясно, что помочь здесь может только правило деятельности, ибо говорить о реальности есть деятельность6.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ