VIII

Именно Платон осознал этот факт и выразительно подчеркнул его значение в «Законах», обвинив своих современников в неспособности оценить его следствия. Как мне представляется, влияние этого факта испытала на себе вся его философия и, в частности, его теория «форм» или «идей».

Платон был очень близок к пифагорейцам и к школе эле-атов, и хотя он, по-видимому, недолюбливал Демокрита, сам он был в некотором роде атомистом. (Атомистическое учение сохранялось в качестве одной из традиций Академии41.) Это

146

неудивительно, если принять во внимание тесную связь пифагорейства с идеями атомизма. Однако все это оказалось под угрозой благодаря открытию иррациональности. Я полагаю, что главный вклад Платона в науку обусловлен его осознанием проблемы иррациональности и той модификацией пифагорейства и атомизма, которую он предпринял для спасения науки от катастрофы.

Он понял, что чисто арифметическая теория природы рухнула и нужен новый математический метод описания и объяснения мира. Поэтому он приступил к разработке самостоятельного геометрического метода. Свое наиболее полное воплощение этот метод нашел в «Элементах» платоника Евклида.

Каковы факты? Я попытаюсь кратко суммировать их.

(1) Учение пифагорейцев и атомизм Демокрита существенно опирались на арифметику, т.е. на счет.

(2) Платон подчеркнул катастрофические последствия открытия иррациональности.

(3) Над входом в Академию он написал: «Да не войдет сюда никто, не знающий геометрии». Но геометрия, согласно прямому ученику Платона Аристотелю42 и Евклиду, часто говорит о несоизмеримостях и иррациональности в отличие от арифметики, рассматривающей «четное и нечетное» (т.е. целые числа и их отношения).

(4) Вскоре после смерти Платона его школа в «Элементах» Евклида создала произведение, освободившее математику от «арифметического» предположения о соизмеримости и рациональности.

(5) Платон и сам внес вклад в это развитие, в частности, в разработку геометрии твердых тел.

(6) Говоря точнее, в «Тимее» он предложил геометрический вариант ранее чисто арифметической атомной теории — вариант, в котором элементарные частицы (знаменитые платоновские Тела) строились из треугольников, включавших в себя иррациональные квадратные корни из двух и трех. (См. ниже.) Во всех других отношениях он сохраняет идеи пифагорейцев и наиболее важные идеи Демокрита43. В то же время он

147

устраняет пустоту Демокрита, ибо понимает44, что движение возможно даже в «заполненном» мире, если его истолковывать наподобие вихрей в жидкости. Таким образом, он сохраняет и некоторые из наиболее важных идей Парменида45.

(7) Платон стимулировал создание геометрических моделей мира, в частности, моделей, объясняющих движения планет. И я полагаю, что геометрия Евклида была не просто очерком чистой геометрии (как обычно считают), а органоном теории мира. С этой точки зрения, «Элементы» были не «учебником по геометрии», а попыткой систематического решения основных проблем космологии Платона. Это было осуществлено столь успешно, что решенные проблемы ушли в тень и оказались почти забытыми. Какой-то их след сохранился у Прокла, который пишет: «Некоторые думали, что содержание разнообразных книг (Евклида) имеет отношение к космосу и что они были предназначены для того, чтобы изучать универсум» (op. cit., прим. 38 выше, Prologus, II, р. 71, 2—5). Однако даже Прокл не упоминает в этом контексте о главной проблеме — проблеме иррациональности (он, конечно, упоминает о ней в других местах), хотя и указывает, что «Элементы» явились высшим достижением в построении «космических» или «платонических» правильных многогранников. Именно со времен46 Платона и Евклида, но не ранее, геометрия (а не арифметика) становится важнейшим инструментом всех физических объяснений и описаний как в теории материи, так и в космологии47.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК