5.1. Статистическая и логическая вероятность
5.1. Статистическая и логическая вероятность
Элементы математической теории вероятностей были введены еще в XVII в., когда ученые обратились к анализу азартных игр. Эти игры организованы таким образом, что шансы участников выиграть оказываются равновозможными. В самом деле, если игральная кость, представляющая собой тщательно изготовленный кубик, на каждой грани которого нанесены очки от 1 до 6, будет подбрасываться вверх, то выпадение каждой грани, т.е. любого числа очков, будет одинаково вероятным. Аналогично этому организована игра в рулетку или в карты. Во всех этих играх существует конечное число альтернатив и осуществление каждой из них является одинаково возможной. Поэтому для численного определения вероятности события (выпадения определенного количества очков при бросании кости, попадания шарика в сектор рулетки, получения карты и т.п.) необходимо подсчитать число всех равновозможных событий и число тех событий, которые благоприятствуют появлению ожидаемого события. Тогда отношение числа благоприятствующих событий к числу всех равновозможных и будет определять вероятность интересующего нас события. Так, выпадение "орла" при бросании монеты будет равно 1/2, так как равновозможными здесь являются как выпадение "орла", так и "решки"; благоприятствующим же случаем считается выпадение именно "орла". Аналогично этому вероятность выпадения 5 очков при бросании кости равна 1/6. В общей форме такое соотношение между благоприятствующими событиями и всеми равновозможными можно представить формулой:
P(A) = m/n.
где Р (А) обозначает вероятность события А;
m - число случаев, благоприятствующих появлению события А;
п - число всех равновозможных событий.
Нередко благоприятствующий случай называют шансом, и поэтому говорят, например, что шанс выбросить пятерку при игре в кости составляет 1/6.
Подход к интерпретации вероятности, возникший из анализа азартных игр и применимый к событиям, исходы которых являются симметричными или равновозможными, получил название классической концепции вероятности. Свое завершение и наиболее ясную формулировку он нашел в трудах великого французского математика и астронома П.С. Лапласа.
Однако этот взгляд на вероятность оказался ограниченным с точки зрения практического приложения и неудовлетворительным теоретически. В самом деле, понятие равновозможности, на которое опирается определение вероятности, ничем, по сути дела, не отличается от равновероятности. В результате вероятность определяется через равновероятность, а это означает, что в таком определении допускается порочный круг. Но главное состоит даже не в этом, поскольку симметричные исходы событий либо специально организованы, как в азартных играх, либо встречаются крайне редко. События, с которыми мы встречаемся в науке и в реальной жизни, лишь в исключительных случаях бывают симметричными. Поэтому к ним неприменимо классическое понятие вероятности.
Еще в античном мире ученые обратили внимание на то, что степень возможности определенного повторяющегося события зависит от частоты его появления. Чем чаще повторяется событие, тем выше степень его возможности или вероятности. Такие события впоследствии стали называть массовыми случайными событиями, ибо они во-первых, отличаются от регулярных, закономерно появляющихся событий, во-вторых, они не являются уникальными единичными событиями, о возможности появления которых бессмысленно было бы судить по частоте.
Эта идея вероятности как относительной частоты появления массового случайного события интуитивно осознавалось и в статистике, и в страховом деле, и в конкретных естественных и социально-экономических науках. Но ясное и точное представление о новой интерпретации вероятности сложилось лишь в начале нашего века. В его основе лежит понятие об относительной частоте появления массового случайного события при достаточно длительных наблюдениях или испытаниях. Так, наблюдая случаи заболевания инфекционной болезнью, например дифтеритом, у определенных групп населения, медики могут выявить ее относительную частоту, вычислив отношение числа заболевших за определенный период времени к общему числу группы населения. Аналогично этому качество производимой массовой продукции определяют путем отношения числа бракованных изделий к общему числу изделий, изготовленных в течение недели, месяца или квартала. Очевидно, что ни о каких равновероятностных исходах подобных событий речи быть не может. Поэтому вероятность в таких случаях определяют путем статистических выкладок. Вот почему это понятие вероятности называется статистическим. Численно вероятность определяется через относительную частоту, отсюда ее другое название - частотной. Такой подход принят в статистике, где вероятность отождествляется с относительной частотой появления массового случайного события при достаточно длительных испытаниях. Длительность испытаний в определении никак не оговаривается, ибо она должна быть установлена конкретным исследованием.
Однако некоторые ученые считают описанный выше подход к определению статистической вероятности с теоретической точки зрения необоснованным, в связи с чем, например, Р. Мизес и Г. Рейхенбах предложили определять статистическую вероятность как предел относительной частоты события, когда число испытаний стремится к бесконечности:
Р(А) = lim m/n
n ? ?
где m - обозначает число появления событий с интересующим исследователя свойством;
n - число всех возможных испытаний.
Правда, против этого также выдвигаются возражения, в частности, утверждают, что бесконечное множество испытаний на практике осуществить невозможно, но с подобной точки зрения пришлось бы отказаться от предельных понятий в науке вообще (мгновенная скорость, абсолютно упругое тело, идеальный газ и т.п.), а между тем они играют существенную роль в построении любой теоретической науки.
Важно обратить внимание на то, что статистическая вероятность характеризует непосредственно не отдельное событие, а определенный класс событий. Когда мы говорим о бракованных изделиях, то речь идет о вероятности появления не индивидуального изделия, а некоторой их группы. Точно так же, когда говорят о вероятности заболевания, то не имеют в виду какого-либо конкретного человека, а лишь определенный процент заболевших. С такой точки зрения статистическое понятие вероятности оказывается шире классического, ибо убедиться в правильности того, что при бросании кости выпадает любое количество очков от 1 до 6, можно путем длительных испытаний и их статистического анализа. Более того, если кость или монета будет фальсифицированы, например, нарушением их симметричной формы, то все равно практически только путем длительных бросаний можно установить, какой стороной или гранью монета или костяной кубик будет падать чаще, чем другой.
Статистическое понятие вероятности характеризует, следовательно, численное значение степени возможности появления массового случайного события при длительных испытаниях и тем самым является объективным по своему содержанию. Оно отбрасывает то, что происходит в объективном мире и не зависит от субъекта. Субъективная вероятность в противоположность этому относится к индивидуальной вере, предпочтениям, ожиданиям и надеждам отдельного субъекта. Она трудно поддается рациональному анализу, и поэтому с ней редко приходится встречаться в научном познании, которое ориентируется на достижение объективного знания о реальном мире.
Субъективную вероятность не следует смешивать с логической вероятностью, которая хотя и не имеет непосредственного отношения к объективному миру, но определяет логическое отношение между посылками и заключением вероятностного рассуждения. Как и отношение логической дедукции (или вывода), логическая вероятность характеризует особую, вероятностную связь между посылками и заключением, и такая связь не зависит от веры, желания и намерения субъекта, поэтому она имеет интерсубъективный характер. Всякий, кто принимает посылки такого правдоподобного рассуждения не может по своему произволу приписывать вероятность заключению, ибо последнее зависит от того, в какой степени посылки подтверждают заключение. Если обозначить логическую вероятность через Р, подтверждающие ее посылки (факты, свидетельства, показания и т.п.) - через Е, а степень подтверждения - через с, тогда заключение правдоподобного рассуждения Н, являющееся гипотезой, можно представить формулой:
Р(Н/Е) = с.
Относительно определения степени вероятности правдоподобного рассуждения мнения исследователей расходятся. Известный английский экономист Дж. M. Кейнс, написавший первый трактат по логической вероятности, считал, что эта степень может быть определена численно только в немногих случаях, чаще всего приходится иметь дело со сравнением одних вероятностей с другими, в некоторых случаях даже такое сравнение оказывается невозможным.
Другой автор системы вероятностей логики X. Джефрис считал логическое понятие вероятности основополагающим, с помощью которого можно определить даже статистическую вероятность. Более осторожную и убедительную позицию занимал известный австрийский логик Р. Карнап, который признавал самостоятельность двух интерпретаций вероятности, каждая из которых имеет свою область применения. Объективная интерпретация анализирует относительную частоту появления массовых случайных событий, интерсубъективная, т.е. логическая вероятность устанавливает вероятностное логическое отношение между посылками и заключением правдоподобного рассуждения. Поскольку в логике чаще всего приходится встречаться с индуктивными рассуждениями, как типичными видами правдоподобных рассуждений, логическую вероятность часто называют индуктивной вероятностью. В связи с этим иногда индуктивное рассуждение истолковывается слишком широко: все недедуктивные рассуждения рассматриваются как индуктивные, но такой подход, как мы покажем ниже, вряд ли обоснован.
Таким образом, статистическая и логическая вероятности одинаково необходимы и полезны для успешной научной и практической деятельности. Не говоря уже о широком использовании статистической вероятности для анализа массовых случайных событий, в последние годы это понятие получило широкое применение всюду, где приходится принимать решения. Ведь чтобы принять правильное решение, необходимо учитывать наряду с его полезностью также возможность или вероятность его осуществления в конкретной ситуации. Если имеется статистическая информация, тогда для этого используется статистическая вероятность. Когда же статистика отсутствует или в принципе невозможна, то обращаются к логической вероятности, т.е. устанавливают отношение между фактами, свидетельствами и другими данными и гипотезой, определяя степень подтверждения гипотезы фактами. Все это показывает плодотворность взаимодополнения статистической и логической вероятностей, эмпирического и теоретического определения вероятности.
Эмпирическое измерение вероятности основано на определении относительной частоты случайных событий. Если нам будут известны начальные или исходные вероятности, то по математическим законам теории вероятностей мы можем найти вероятность образованных из них сложных или совокупных событий: объединения, пересечения, дополнения. В модифицированном виде аппарат теории вероятностей применим также к логическим вероятностям, но здесь определение первоначальных вероятностей наталкивается на серьезные трудности, поскольку степень подтверждения не всякой гипотезы можно определить численно. Тем не менее даже использование понятий "больше", "меньше" и "равно" дает более точное знание, чем чисто интуитивные соображения о степени подтверждения правдоподобных рассуждений в случае индукции или аналогии.