2.2. Вычисления
2.2. Вычисления
В этом разделе мы поговорим о вычислениях. Под вычислением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или иной компьютерной программой. Не следует забывать и о том, что понятие вычисления включает в себя не только выполнение обычных арифметических действий — таких, например, как сложение или умножение чисел, — но и некоторые другие процессы. Так, частью вычислительной процедуры могут стать и вполне определенные логические операции. В качестве примера вычисления можно рассмотреть следующую задачу:
(А) Найти число, не являющееся суммой квадратов трех чисел.
Под «числом» в данном случае я подразумеваю «натуральное число», т.е. число из ряда
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ….
Под квадратом числа понимается результат умножения натурального числа на само себя, т.е. число из ряда
0, 1, 4, 9, 16, 25, 36, …;
представленные в этом ряду числа получены следующим образом:
0 ? 0 = 02, 1 ? 1 = 12, 2 ? 2 = 22, 3 ? 3 = 32, 4 ? 4 = 42, 5 ? 5 = 52, 6 ? 6 = 62, ….
Такие числа называются «квадратами», поскольку их можно представить в виде квадратных матриц (пустой матрицей в начале строки обозначен 0):
С учетом вышесказанного решение задачи (А) может происходить следующим образом. Мы поочередно проверяем каждое натуральное число, начиная с 0, на предмет того, не является ли оно суммой трех квадратов. При этом, разумеется, рассматриваются только те квадраты, величина которых не превышает самого числа. Таким образом, для каждого натурального числа необходимо проверить некоторое конечное количество квадратов. Отыскав тройку квадратов, составляющих в сумме данное число, переходим к следующему натуральному числу и снова ищем среди квадратов (не превышающих по величине рассматриваемое число) такие три, которые дают в сумме это самое число. Вычисление завершается лишь тогда, когда мы находим натуральное число, которое невозможно получить путем сложения любых трех квадратов. Попробуем применить описанную процедуру на практике и начнем наше вычисление с нуля. Нуль равен 02 + 02 + 02, что, безусловно, является суммой трех квадратов. Далее рассматриваем единицу и находим, что она не равна 02 + 02 + 02, однако равна 02 + 02 + 12. Переходим к числу 2 и выясняем, что оно не равно ни 02 + 02 + 02, ни 02 + 02 + 12, но равно 02 + 12 + 12. Затем следует число 3 и сумма 3 = 12 + 12 + 12; далее — число 4 и сумма 4 = 02 + 02 + 22; после 5 = 02 + 12 + 22 и 6 = 12 + 12 + 22 переходим к 7, и тут обнаруживается, что ни одна из троек квадратов (всех возможных троек квадратов, каждый из которых не превышает 7)
02 + 02 + 02 02 + 02 + 12 02 + 02 + 22 02 + 12 + 12 02 + 12 + 22
02 + 22 + 22 12 + 12 + 12 12 + 12 + 22 12 + 22 + 12 22 + 22 + 22
не дает в сумме 7. На этом этапе вычисление завершается, а мы делаем вывод: 7 есть одно из искомых чисел, так как оно не является суммой квадратов трех чисел.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Лекция 3. Искусство вычисления
Лекция 3. Искусство вычисления Мы живем в цивилизации техники, о которой большинство /I/I из нас имеет малое представление. Почему загорается электрический свет, когда мы нажимаем на включатель? Почему холодно в холодильнике? Как летчик с самолета берет на мушку цель на
1.8. Аналоговые вычисления
1.8. Аналоговые вычисления До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным цифровым компьютерам или, точнее, к их теоретическим предшественникам — машинам Тьюринга. Существуют и другие разновидности
2.3. Незавершающиеся вычисления
2.3. Незавершающиеся вычисления Будем считать, что с задачей (А) нам просто повезло. Попробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чисел. На этот раз, добравшись до числа 7, мы находим, что в виде суммы квадратов четырех чисел его
4.5. Вычисления и физика
4.5. Вычисления и физика На расстоянии около 30 000 световых лет от Земли, в созвездии Орла, есть две невероятно плотные мертвые звезды, вращающиеся одна вокруг другой. Вещество в этих звездах сжато до такой степени, что если сделать из него теннисный мячик, то масса его
7.3. Квантовые вычисления
7.3. Квантовые вычисления Свойство возбужденного нейрона возмущать окружение всегда представлялось мне донельзя неудобным — оно никак не вписывалось в то предварительное предположение, которое я пытался обосновать в НРК и в рамках которого квантовая суперпозиция