5.16. Ортогональность произведений состояний

We use cookies. Read the Privacy and Cookie Policy

5.16. Ортогональность произведений состояний

С ортогональностью произведений состояний (в том виде, в каком я определил эти произведения выше) дела обстоят не так просто, как хотелось бы. Допустим, у нас имеется два ортогональных состояния |?? и |??; тогда мы вправе ожидать, что состояния |??|?? и |??|?? также будут ортогональными, причем при любом |??. Пусть, например, |?? и |?? — возможные альтернативные состояния фотона, где |?? — состояние фотона, зарегистрированного неким фотоэлементом, а ортогональное |?? состояние |?? — предполагаемое состояние фотона в случае, когда фотоэлемент не регистрирует ничего (нулевое измерение). Можно представить себе, что наш фотон является компонентом некоей совокупной системы — просто добавим к нему еще какой-нибудь объект (например, другой фотон, скажем, где-нибудь на Луне) и обозначим состояние этого другого объекта через |??. Таким образом, для нашей совокупной системы возможны два альтернативных состояния — |??|?? и |??|??. Простое добавление состояния |?? в имеющееся описание не должно, разумеется, оказать никакого влияния на ортогональность двух первоначальных состояний. В самом деле, если говорить об определении произведения состояний в терминах обычного «тензорного произведения» (или необычного — в данном случае, грассманова произведения, а точнее, некоторой его модификации, используемой в наших рассуждениях), то так оно и есть, и из ортогональности состояний |?? и |?? действительно следует ортогональность |??|?? и |??|??.

Как бы то ни было, пути, которыми, похоже (согласно 

последним данным квантовой теории), предпочитает следовать Вселенная, далеко не столь прямолинейны. Если бы состояние |?? можно было счесть полностью независимым и от |??, и от |??, то тогда его присутствие и в самом деле ничего бы не меняло. Однако формально полной независимости здесь быть не может, и состояние даже пребывающего на Луне фотона оказывает самое непосредственное воздействие на состояние фотона, регистрируемого нашим фотоэлементом[40]. (С этими формальностями связано, в частности, то, что под обозначением «|??|??» мы подразумеваем произведение грассманова типа — если использовать более привычные термины, то речь тут идет о так называемой «статистике Бозе» (описание состояний фотонов и прочих бозонов) или о «статистике Ферми» (описание состояний фермионов — электронов, протонов и т.д.), см. НРК, с. 277, 278 и, скажем, [94].) Если бы перед нами стояла задача получить абсолютно точный с точки зрения теории результат, то рассмотрение состояния одного-единственного фотона потребовало бы учета состояний всех фотонов во Вселенной. Впрочем, необходимости в этом (к счастью) нет — и без такого учета точность получаемых результатов хоть и не абсолютна, но все же чрезвычайно высока. Если состояния |?? и |?? ортогональны, то можно с очень высокой степенью точности предположить, что ортогональными будут и состояния |??|?? и |??|?? (даже если это произведения грассманова типа), где |?? — любое состояние, не имеющее очевидного отношения к рассматриваемой задаче (каковая задача непосредственно касается лишь ортогональных состояний |?? и |??). Так и предположим.